3D magnetic field effects in the NSC KIPT compact intense X-ray generator

The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton scattering of an intense laser beam allows to produce hard X-rays with intensity up to 10¹⁴ phot/s. One of the main trait of a storage ring lattice for such type of generators is the use o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Zelinsky, A., Mytsykov, A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79372
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:3D magnetic field effects in the NSC KIPT compact intense X-ray generator / A. Zelinsky, A. Mytsykov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 147-149. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79372
record_format dspace
spelling irk-123456789-793722015-04-01T03:02:36Z 3D magnetic field effects in the NSC KIPT compact intense X-ray generator Zelinsky, A. Mytsykov, A. Динамика пучков The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton scattering of an intense laser beam allows to produce hard X-rays with intensity up to 10¹⁴ phot/s. One of the main trait of a storage ring lattice for such type of generators is the use of magnetic elements with combined focusing functions such as bending magnets with quadrupole and sextupole field components. In combination with a very low bending radius and dense magnetic elements positioned along the ring circumference it leads to increasing of 3D magnetic field effects on the electron beam dynamics and can drastically decrease the generated radiation intensity. The paper is devoted to studying the 3D magnetic field effects on bending magnet edges and lattice lens interference on the electron beam dynamics and parameters of produced radiation for the NSC KIPT 225 MeV storage ring. Нове покоління інтенсивних рентгенівських джерел, заснованих на малоэнергетичных накопичувачах електронів, у яких інтенсивний лазерний промінь взаємодіє з пучком електронів (зворотне Комптоновское розсіювання) дозволяють одержати жорстке рентгенівське випромінювання з інтенсивністю 10¹⁴ фот/с. Одна з основних особливостей структури кілець такого типу є використання магнітних елементів з комбінованими функціями, такими як дипольний магніт із квадрупольною і секступольной компонентом магнітного поля. У комбінації з малим радіусом повороту і високою густиною магнітів у структурі це може істотно зменшити інтенсивність рентгенівського випромінювання. Стаття присвячена вивченню впливу 3D ефектів, зв'язаних з розвалом поля на краях магнітів, а також ефектів зв'язаних із взаємним впливом близько розташованих мультипольних лінз. Новое поколение интенсивных рентгеновских источников, основанных на малоэнергетичных накопителях электронов, в которых интенсивный лазерный луч взаимодействует с пучком электронов (обратное Комптоновское рассеяние) позволяет получить жесткое рентгеновское излучение с интенсивностью 10¹⁴ фот/с. Одна из особенностей структуры колец такого типа есть использование магнитных элементов с комбинированными функциями, такими как дипольный магнит с квадрупольной и секступольной компонентой магнитного поля. В комбинации с малым радиусом поворота и высокой плотностью магнитов в структуре это может уменьшить интенсивность рентгеновского излучения. Статья посвящена изучению влияния 3D эффектов, связанных с развалом поля на краях магнитов, а также эффектов, связанных с взаимным влиянием близко расположенных мультипольных линз. 2004 Article 3D magnetic field effects in the NSC KIPT compact intense X-ray generator / A. Zelinsky, A. Mytsykov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 147-149. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 02.30.Dk, 02.30.Em. http://dspace.nbuv.gov.ua/handle/123456789/79372 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика пучков
Динамика пучков
spellingShingle Динамика пучков
Динамика пучков
Zelinsky, A.
Mytsykov, A.
3D magnetic field effects in the NSC KIPT compact intense X-ray generator
Вопросы атомной науки и техники
description The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton scattering of an intense laser beam allows to produce hard X-rays with intensity up to 10¹⁴ phot/s. One of the main trait of a storage ring lattice for such type of generators is the use of magnetic elements with combined focusing functions such as bending magnets with quadrupole and sextupole field components. In combination with a very low bending radius and dense magnetic elements positioned along the ring circumference it leads to increasing of 3D magnetic field effects on the electron beam dynamics and can drastically decrease the generated radiation intensity. The paper is devoted to studying the 3D magnetic field effects on bending magnet edges and lattice lens interference on the electron beam dynamics and parameters of produced radiation for the NSC KIPT 225 MeV storage ring.
format Article
author Zelinsky, A.
Mytsykov, A.
author_facet Zelinsky, A.
Mytsykov, A.
author_sort Zelinsky, A.
title 3D magnetic field effects in the NSC KIPT compact intense X-ray generator
title_short 3D magnetic field effects in the NSC KIPT compact intense X-ray generator
title_full 3D magnetic field effects in the NSC KIPT compact intense X-ray generator
title_fullStr 3D magnetic field effects in the NSC KIPT compact intense X-ray generator
title_full_unstemmed 3D magnetic field effects in the NSC KIPT compact intense X-ray generator
title_sort 3d magnetic field effects in the nsc kipt compact intense x-ray generator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Динамика пучков
url http://dspace.nbuv.gov.ua/handle/123456789/79372
citation_txt 3D magnetic field effects in the NSC KIPT compact intense X-ray generator / A. Zelinsky, A. Mytsykov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 147-149. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT zelinskya 3dmagneticfieldeffectsinthensckiptcompactintensexraygenerator
AT mytsykova 3dmagneticfieldeffectsinthensckiptcompactintensexraygenerator
first_indexed 2025-07-06T03:26:35Z
last_indexed 2025-07-06T03:26:35Z
_version_ 1836866491502297088
fulltext 3D MAGNETIC FIELD EFFECTS IN THE NSC KIPT COMPACT IN- TENSE X-RAY GENERATOR A. Zelinsky, A. Mytsykov National Science Center Kharkov Institute of Physics&Technology, Ukraine E-mail: zelinsky@kipt.kharkov.ua The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton scattering of an intense laser beam allows to produce hard X-rays with intensity up to 1014 phot/s. One of the main trait of a storage ring lattice for such type of generators is the use of magnetic elements with combined focusing functions such as bending magnets with quadrupole and sextupole field components. In combination with a very low bending radius and dense magnetic elements positioned along the ring circumference it leads to increasing of 3D magnetic field effects on the electron beam dynamics and can drastically decrease the generated radiation intensity. The paper is devoted to studying the 3D magnetic field effects on bending magnet edges and lattice lens interference on the electron beam dynamics and parameters of produced radiation for the NSC KIPT 225 MeV storage ring. PACS: 02.30.Dk, 02.30.Em. 1. INTRODUCTION For recent few years the design of a compact X-ray generator NESTOR (New-generation Electron Storage Ring) based on the Compton scattering are being carried out in the Kharkov Institute of Physics and Technology (KIPT) [1]. It is supposed that the generator will pro- duce the X-rays of intensity up to 2×1012 phot/s. It is possible to reach such a level of generation that the elec- tron beam size of about 50 µm in the interaction point is provided. For this purpose a lattice of the ring being achromatic in the first as well as in the second order at the interaction point has been developed. The results of numerical simulations of the electron beam dynamics in NESTOR taking into account the intrabeam scattering and Compton scattering show that the required value of the steady state electron beam size can be obtained. All calculations were accomplished taking into ac- count the ideal magnetic fields; meanwhile focusing conditions in the facility are very difficult. Under condi- tions of compactness, strong focusing and use of magnet elements with combined focusing functions the effects of 3D distribution of a magnetic field can lead to de- creasing of dynamic aperture of the ring and increasing of the effective beam size. So, there are tasks to design magnetic elements of the ring in such a way to provide a minimum value of particle motion exiting, to investigate 3D effects of designed magnetic elements and to im- prove the ring lattice if it is needed. This article is the first publications devoted to this subject and mainly describes efforts of the KIPT on de- signing magnetic elements for NESTOR with a mini- mum value of non-ideal magnetic field components. The estimation of the values of such components had been carried out. The preliminary results of dynamic aperture simulations are presented. 2. PARAMETERS OF MAGNETIC ELE- MENTS OF THE NESTOR LATTICE The lattice of the X-ray generator NESTOR with the electron beam energy up to 225 MeV are presented in [2]. The main parameters of lattice focusing elements are presented in Table. Main parameters of the magnetic elements of NESTOR Element type Aperture radius, mm B0, T G1, Т/m G2, Т/m2 Eff. length, m Dipole magnet 18 1.5 1.8 - 0.7854 Quadrupole magnet 18 - 20 - 0.15 Sextupole magnet 18 - - 225 0.1 3. DIPOLE MAGNET EDGE FIELD The characteristics of the edge field depend on the following factors: • Magnetic field topology in the regular part of the mag- net; • Shape of the magnet edge; • Exiting coil positions; • Positions of the next magnets. All this factors were taken into account in calcula- tions of the magnetic field map of the dipole magnet. The calculations have been carried out using the MER- MAID code [3]. The shape of the regular part of the dipole magnet pole was calculated by the authors with method [4] and checked up with MERMAID [3] and POISSON [5] codes. The following requirements where taken into ac- count through the calculations of a dipole pole shape: • The operation area width of the dipole magnet is ± 0.025 m; • Field quality are ∆B/B0 < 10-4; ∆G/G0 < 10-2; • There is a flat plate on the pole for magnet gap calibra- tion; • The curvature of the pole sections has to provide a required magnetic field strength in the operation area without saturation of the pole; • The pole shape has to provide a minimum value of nonlinear field components at magnetic field value equal to 1.5 T at the reference orbit. The dipole magnet with the pole shape presented in Fig.1 provides a magnetic field as is shown in Fig.2. The magnetic field value is normalized with the table value of the magnetic field gradient of the dipole mag- net (Table 1). Calculations were carried out for the cylindrical symmetry case with the radius equal to 0.5 ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.147-149. 147 mailto:mytsykov@kipt.kharkov.ua m. The magnetic field value exceeds 1.8 T nowhere in the magnet gap. To prevent saturation of the dipole magnet pole on the face sides of the magnet pole we use additional plates limiting the pole smoothly in the longitudinal di- rection. The cross-section of the additional plate with cylindrical surface is given in Fig.3. Z,cm x,cm Fig.1. The cross section of the regular part of the dipole magnet pole. Specific parts of the pole are marked with circles. А1-А2, А4-А5 are left and right shims. А2-А3 is the calibrating section. А3-А4 is the section determin- ing the magnetic field quality - 3 - 2 - 1 0 1 2 3 0 . 9 9 5 1 . 0 0 0 1 . 0 0 5 1 . 0 1 0 1 . 0 1 5 1 . 0 2 0 1 . 0 2 5 1 . 0 3 0 X , c m G ( x ) / G 0 Fig.2. The magnetic field gradient distribution along the transversal coordinate in the regular part of the pole. The magnetic field value at the reference orbit equals to 1.5 T The plate is made of iron and is fixed on the pole edge under the angle equal to 0.088 rad relatively to radius that is drown from the geometrical center of the dipole mag- net to the point at the reference orbit with angle coordi- nate equal to 0.676864 rad as is shown in Fig.4. At any cross section, at any longitudinal coordinate the plate shape is parallel to the dipole magnet pole shape. Such a solution was chosen for the following reasons. According with the dipole magnet field map the nu- merical simulation of the reference particle motion was carried out and the distribution of dipole magnetic field and its gradients were obtained for various dipole mag- net edge shapes. Figs.5-8 show these dependences for the final version of the pole shape. Through the simula- tions an angle of pole (1 in Fig.4) and iron plate (2 in Fig.4) jointing was chosen to make an effective length of the quadrupole and sextupole components of the field equal to each other. It was found that the effective boundary of the dipole magnet field is away from the iron edge of the magnet at a distance equal to 0.0233 m. While geometric edge of the sector with the angle of 900 and the center coinciding with the design orbit center is as far away as 0.0247 m from this one. In such way the position of the real dipole magnet center was specified. The higher derivatives of the magnetic field depend on the angle joining of iron plate to the magnet pole very weakly. The values of the sextupole and octupole components of the magnetic field in the dipole magnet of NESTOR equal to: sextupole component: G2 L/B0 = -1.414 [m-1], octupole component: G3 L/B0 = -7.1 [m-2], where G2, G3, are sex- tupole and octupole gradients of the magnetic field re- spectively, L is effective length of the field, B0 is value of dipole component of the magnetic field on the reference orbit. 1 A4 (0,1.8) A5 (2.94353,3.32444) 2 3 Fig.3. The cross section of pole of the dipole magnet with cylindrical surface which involves electron beam reference orbit. The values of parameters are in cm Fig.4. Face part of the NESTOR dipole magnet: 1 is dipole magnet face; 2 is magnet pole; 3 is excitation coil 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.2 0.4 0.6 0.8 1 S,m B/B0 Fig.5. Longitudinal distribution of the magnetic field in the NESTOR dipole magnet S,m G/B0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 -1.2 -1 -0.8 -0.6 -0.4 -0.2 S,m Fig.6. Longitudinal distribution of the quadrupole gra- dient of the magnetic field in the NESTOR dipole magnet 148 S/B0 S,m 0.05 0.1 0.15 0.2 0.25 0.3 0.35 -15 -10 -5 S,m Fig.7. Longitudinal distribution of the sextupole gradient of the magnetic field in the NESTOR dipole magnet 4. MUTUAL EFFECTS OF RING MAGNETIC ELEMENTS The calculations were carried out for lens couples: quadrupole – sextupole, quadrupole - quadrupole, sex- tupole – sextupole with parameters according to Table 1. The integral harmonic composition of the magnetic field for lens couples mentioned above was determined with MERMAID code [3]. According to calculation results the mutual lenses effects lead to weak decreasing (of about 3%) of the strength of the main harmonic. Appearance of higher harmonics was observed only in the case of signif- icant increase of the geometrical aperture of lenses. 5. DYNAMIC APERTURE NUMERICAL SIMULATIONS RESULTS Assuming that the quadrupole component of the mag- netic field due to 3D magnetic field distribution can be suppressed by the choice of an angle of an additional plate fixation the simulation of the dynamic aperture value had been carried out taking into account the obtained value of sextupole and octupole components of the field due to 3D field distributions in bending magnet. The calculation re- sults show that these components do not restrict the bound- aries of motion stable area. The value of the dynamic aper- ture at the interaction point is equal to 3×3 mm. On the other hand, the growth of the steady state beam size was observed. S/B0 S,m 0.05 0.1 0.15 0.2 0.25 0.3 0.35 -400 -200 200 Fig.8. Longitudinal distribution of the octupole gradient of the magnetic field in the NESTOR dipole magnet 6. CONCLUSIONS The results of numerical simulations showed that the 3D magnetic field distribution of the dipole magnet devel- oped in the NSC KIPT does not restrict the dynamic aper- ture of the X-ray generator NESTOR. The mutual effects of magnetic lenses in the ring are weak and do not lead to the effects that can be observed. To complete the investiga- tions of the 3D magnetic field effects it is needed to calcu- late magnetic field distribution in the quadrupole lenses. In order to concern investigations of 3D magnetic field effects on reference electron beam size in the interaction point the simulation code is under developing in KIPT. REFERENCES 1. E. Bulyak, P. Gladkikh, A. Zelinsky et al. Compact X-ray source based on Compton scattering // Nucl. Inst. & Methods. 2002, A, № 487, p.241-248. 2. E. Bulyak, P. Gladkikh, A. Zelinsky et al. Kharkov X-rays Generator Based On Compton Scattering // Proc. of SRI 2003, to be published. 3. "Mermaid Users's Guide", Sim Limited, Novosibirsk, 1994. 4. А .Mytsykov. Application of conformal representation for model operation of flat fields created by smooth poles // Problems of Atomic Scince and Technology 1999. Ser.-NPE, No 1(33) p.102-103 (In Russian). 5. "POISSON Group Programs.User's Guide” // CERN, 1965. ЭФФЕКТЫ, ОБУСЛОВЛЕННЫЕ ТРЕХМЕРНЫМ РАСПРЕДЕЛЕНИЕМ МАГНИТНОГО ПОЛЯ В КОМПАКТНОМ ГЕНЕРАТОРЕ ИНТЕНСИВНОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ННЦ ХФТИ А. Зелинский, A. Мыцыков Новое поколение интенсивных рентгеновских источников, основанных на малоэнергетичных накопителях электро- нов, в которых интенсивный лазерный луч взаимодействует с пучком электронов (обратное Комптоновское рассеяние) позволяет получить жесткое рентгеновское излучение с интенсивностью 1014 фот/с. Одна из особенностей структуры ко- лец такого типа есть использование магнитных элементов с комбинированными функциями, такими как дипольный маг- нит с квадрупольной и секступольной компонентой магнитного поля. В комбинации с малым радиусом поворота и вы- сокой плотностью магнитов в структуре это может уменьшить интенсивность рентгеновского излучения. Статья посвя- щена изучению влияния 3D эффектов, связанных с развалом поля на краях магнитов, а также эффектов, связанных с вза- имным влиянием близко расположенных мультипольных линз. ЕФЕКТИ, ЗУМОВЛЕНІ ТРИВИМІРНИМ РОЗПОДІЛОМ МАГНІТНОГО ПОЛЯ В КОМПАКТНОМУ ГЕНЕРАТОРІ ІНТЕНСИВНОГО РЕНТГЕНІВСЬКОГО ВИПРОМІНЮВАННЯ ННЦ ХФТІ А. Зелінський, A. Мициков Нове покоління інтенсивних рентгенівських джерел, заснованих на малоэнергетичных накопичувачах електронів, у яких інтенсивний лазерний промінь взаємодіє з пучком електронів (зворотне Комптоновское розсіювання) дозволяють одержати жорстке рентгенівське випромінювання з інтенсивністю 1014 фот/с. Одна з основних особливостей структури кілець такого типу є використання магнітних елементів з комбінованими функціями, такими як дипольний магніт із квадрупольною і секступольной компонентом магнітного поля. У комбінації з малим радіусом повороту і високою густиною магнітів у структурі це може істотно зменшити інтенсивність рентгенівського випромінювання. Стаття присвячена вивченню впливу 3D ефектів, зв'язаних з розвалом поля на краях магнітів, а також ефектів зв'язаних із взаємним впливом близько розташованих мультипольних лінз. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.147-149. 147 3D Magnetic Field Effects in THE NSC KIPT Compact Intense X-ray Generator 1. Introduction 2. parameters of magnetic elements of the NESTOR lattice 3. Dipole magnet edge field 4. mutual effects of ring magnetic elements 5. dynamic aperture numerical simulations results 6. conclusionS References