3D magnetic field effects in the NSC KIPT compact intense X-ray generator
The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton scattering of an intense laser beam allows to produce hard X-rays with intensity up to 10¹⁴ phot/s. One of the main trait of a storage ring lattice for such type of generators is the use o...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79372 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | 3D magnetic field effects in the NSC KIPT compact intense X-ray generator / A. Zelinsky, A. Mytsykov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 147-149. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79372 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-793722015-04-01T03:02:36Z 3D magnetic field effects in the NSC KIPT compact intense X-ray generator Zelinsky, A. Mytsykov, A. Динамика пучков The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton scattering of an intense laser beam allows to produce hard X-rays with intensity up to 10¹⁴ phot/s. One of the main trait of a storage ring lattice for such type of generators is the use of magnetic elements with combined focusing functions such as bending magnets with quadrupole and sextupole field components. In combination with a very low bending radius and dense magnetic elements positioned along the ring circumference it leads to increasing of 3D magnetic field effects on the electron beam dynamics and can drastically decrease the generated radiation intensity. The paper is devoted to studying the 3D magnetic field effects on bending magnet edges and lattice lens interference on the electron beam dynamics and parameters of produced radiation for the NSC KIPT 225 MeV storage ring. Нове покоління інтенсивних рентгенівських джерел, заснованих на малоэнергетичных накопичувачах електронів, у яких інтенсивний лазерний промінь взаємодіє з пучком електронів (зворотне Комптоновское розсіювання) дозволяють одержати жорстке рентгенівське випромінювання з інтенсивністю 10¹⁴ фот/с. Одна з основних особливостей структури кілець такого типу є використання магнітних елементів з комбінованими функціями, такими як дипольний магніт із квадрупольною і секступольной компонентом магнітного поля. У комбінації з малим радіусом повороту і високою густиною магнітів у структурі це може істотно зменшити інтенсивність рентгенівського випромінювання. Стаття присвячена вивченню впливу 3D ефектів, зв'язаних з розвалом поля на краях магнітів, а також ефектів зв'язаних із взаємним впливом близько розташованих мультипольних лінз. Новое поколение интенсивных рентгеновских источников, основанных на малоэнергетичных накопителях электронов, в которых интенсивный лазерный луч взаимодействует с пучком электронов (обратное Комптоновское рассеяние) позволяет получить жесткое рентгеновское излучение с интенсивностью 10¹⁴ фот/с. Одна из особенностей структуры колец такого типа есть использование магнитных элементов с комбинированными функциями, такими как дипольный магнит с квадрупольной и секступольной компонентой магнитного поля. В комбинации с малым радиусом поворота и высокой плотностью магнитов в структуре это может уменьшить интенсивность рентгеновского излучения. Статья посвящена изучению влияния 3D эффектов, связанных с развалом поля на краях магнитов, а также эффектов, связанных с взаимным влиянием близко расположенных мультипольных линз. 2004 Article 3D magnetic field effects in the NSC KIPT compact intense X-ray generator / A. Zelinsky, A. Mytsykov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 147-149. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 02.30.Dk, 02.30.Em. http://dspace.nbuv.gov.ua/handle/123456789/79372 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Динамика пучков Динамика пучков |
spellingShingle |
Динамика пучков Динамика пучков Zelinsky, A. Mytsykov, A. 3D magnetic field effects in the NSC KIPT compact intense X-ray generator Вопросы атомной науки и техники |
description |
The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton
scattering of an intense laser beam allows to produce hard X-rays with intensity up to 10¹⁴ phot/s. One of the main
trait of a storage ring lattice for such type of generators is the use of magnetic elements with combined focusing
functions such as bending magnets with quadrupole and sextupole field components. In combination with a very low
bending radius and dense magnetic elements positioned along the ring circumference it leads to increasing of 3D
magnetic field effects on the electron beam dynamics and can drastically decrease the generated radiation intensity.
The paper is devoted to studying the 3D magnetic field effects on bending magnet edges and lattice lens interference
on the electron beam dynamics and parameters of produced radiation for the NSC KIPT 225 MeV storage ring. |
format |
Article |
author |
Zelinsky, A. Mytsykov, A. |
author_facet |
Zelinsky, A. Mytsykov, A. |
author_sort |
Zelinsky, A. |
title |
3D magnetic field effects in the NSC KIPT compact intense X-ray generator |
title_short |
3D magnetic field effects in the NSC KIPT compact intense X-ray generator |
title_full |
3D magnetic field effects in the NSC KIPT compact intense X-ray generator |
title_fullStr |
3D magnetic field effects in the NSC KIPT compact intense X-ray generator |
title_full_unstemmed |
3D magnetic field effects in the NSC KIPT compact intense X-ray generator |
title_sort |
3d magnetic field effects in the nsc kipt compact intense x-ray generator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Динамика пучков |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79372 |
citation_txt |
3D magnetic field effects in the NSC KIPT compact intense X-ray generator / A. Zelinsky, A. Mytsykov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 147-149. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT zelinskya 3dmagneticfieldeffectsinthensckiptcompactintensexraygenerator AT mytsykova 3dmagneticfieldeffectsinthensckiptcompactintensexraygenerator |
first_indexed |
2025-07-06T03:26:35Z |
last_indexed |
2025-07-06T03:26:35Z |
_version_ |
1836866491502297088 |
fulltext |
3D MAGNETIC FIELD EFFECTS IN THE NSC KIPT COMPACT IN-
TENSE X-RAY GENERATOR
A. Zelinsky, A. Mytsykov
National Science Center Kharkov Institute of Physics&Technology, Ukraine
E-mail: zelinsky@kipt.kharkov.ua
The new generation of intense X-rays sources based on a low-energy electron storage ring and on the Compton
scattering of an intense laser beam allows to produce hard X-rays with intensity up to 1014 phot/s. One of the main
trait of a storage ring lattice for such type of generators is the use of magnetic elements with combined focusing
functions such as bending magnets with quadrupole and sextupole field components. In combination with a very low
bending radius and dense magnetic elements positioned along the ring circumference it leads to increasing of 3D
magnetic field effects on the electron beam dynamics and can drastically decrease the generated radiation intensity.
The paper is devoted to studying the 3D magnetic field effects on bending magnet edges and lattice lens interference
on the electron beam dynamics and parameters of produced radiation for the NSC KIPT 225 MeV storage ring.
PACS: 02.30.Dk, 02.30.Em.
1. INTRODUCTION
For recent few years the design of a compact X-ray
generator NESTOR (New-generation Electron Storage
Ring) based on the Compton scattering are being carried
out in the Kharkov Institute of Physics and Technology
(KIPT) [1]. It is supposed that the generator will pro-
duce the X-rays of intensity up to 2×1012 phot/s. It is
possible to reach such a level of generation that the elec-
tron beam size of about 50 µm in the interaction point is
provided. For this purpose a lattice of the ring being
achromatic in the first as well as in the second order at
the interaction point has been developed. The results of
numerical simulations of the electron beam dynamics in
NESTOR taking into account the intrabeam scattering
and Compton scattering show that the required value of
the steady state electron beam size can be obtained.
All calculations were accomplished taking into ac-
count the ideal magnetic fields; meanwhile focusing
conditions in the facility are very difficult. Under condi-
tions of compactness, strong focusing and use of magnet
elements with combined focusing functions the effects
of 3D distribution of a magnetic field can lead to de-
creasing of dynamic aperture of the ring and increasing
of the effective beam size. So, there are tasks to design
magnetic elements of the ring in such a way to provide a
minimum value of particle motion exiting, to investigate
3D effects of designed magnetic elements and to im-
prove the ring lattice if it is needed.
This article is the first publications devoted to this
subject and mainly describes efforts of the KIPT on de-
signing magnetic elements for NESTOR with a mini-
mum value of non-ideal magnetic field components.
The estimation of the values of such components had
been carried out. The preliminary results of dynamic
aperture simulations are presented.
2. PARAMETERS OF MAGNETIC ELE-
MENTS OF THE NESTOR LATTICE
The lattice of the X-ray generator NESTOR with the
electron beam energy up to 225 MeV are presented in
[2]. The main parameters of lattice focusing elements
are presented in Table.
Main parameters of the magnetic elements of NESTOR
Element
type
Aperture
radius,
mm
B0,
T
G1,
Т/m
G2,
Т/m2
Eff.
length,
m
Dipole
magnet 18 1.5 1.8 - 0.7854
Quadrupole
magnet 18 - 20 - 0.15
Sextupole
magnet 18 - - 225 0.1
3. DIPOLE MAGNET EDGE FIELD
The characteristics of the edge field depend on the
following factors:
• Magnetic field topology in the regular part of the mag-
net;
• Shape of the magnet edge;
• Exiting coil positions;
• Positions of the next magnets.
All this factors were taken into account in calcula-
tions of the magnetic field map of the dipole magnet.
The calculations have been carried out using the MER-
MAID code [3].
The shape of the regular part of the dipole magnet
pole was calculated by the authors with method [4] and
checked up with MERMAID [3] and POISSON [5]
codes. The following requirements where taken into ac-
count through the calculations of a dipole pole shape:
• The operation area width of the dipole magnet is ±
0.025 m;
• Field quality are ∆B/B0 < 10-4; ∆G/G0 < 10-2;
• There is a flat plate on the pole for magnet gap calibra-
tion;
• The curvature of the pole sections has to provide a
required magnetic field strength in the operation
area without saturation of the pole;
• The pole shape has to provide a minimum value of
nonlinear field components at magnetic field value
equal to 1.5 T at the reference orbit.
The dipole magnet with the pole shape presented in
Fig.1 provides a magnetic field as is shown in Fig.2.
The magnetic field value is normalized with the table
value of the magnetic field gradient of the dipole mag-
net (Table 1). Calculations were carried out for the
cylindrical symmetry case with the radius equal to 0.5
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2.
Series: Nuclear Physics Investigations (43), p.147-149. 147
mailto:mytsykov@kipt.kharkov.ua
m. The magnetic field value exceeds 1.8 T nowhere in the
magnet gap.
To prevent saturation of the dipole magnet pole on
the face sides of the magnet pole we use additional
plates limiting the pole smoothly in the longitudinal di-
rection. The cross-section of the additional plate with
cylindrical surface is given in Fig.3.
Z,cm
x,cm
Fig.1. The cross section of the regular part of the dipole
magnet pole. Specific parts of the pole are marked with
circles. А1-А2, А4-А5 are left and right shims. А2-А3 is
the calibrating section. А3-А4 is the section determin-
ing the magnetic field quality
- 3 - 2 - 1 0 1 2 3
0 . 9 9 5
1 . 0 0 0
1 . 0 0 5
1 . 0 1 0
1 . 0 1 5
1 . 0 2 0
1 . 0 2 5
1 . 0 3 0
X , c m
G ( x ) / G 0
Fig.2. The magnetic field gradient distribution along the
transversal coordinate in the regular part of the pole. The
magnetic field value at the reference orbit equals to 1.5 T
The plate is made of iron and is fixed on the pole edge
under the angle equal to 0.088 rad relatively to radius that
is drown from the geometrical center of the dipole mag-
net to the point at the reference orbit with angle coordi-
nate equal to 0.676864 rad as is shown in Fig.4. At any
cross section, at any longitudinal coordinate the plate
shape is parallel to the dipole magnet pole shape.
Such a solution was chosen for the following reasons.
According with the dipole magnet field map the nu-
merical simulation of the reference particle motion was
carried out and the distribution of dipole magnetic field
and its gradients were obtained for various dipole mag-
net edge shapes. Figs.5-8 show these dependences for
the final version of the pole shape. Through the simula-
tions an angle of pole (1 in Fig.4) and iron plate (2 in
Fig.4) jointing was chosen to make an effective length
of the quadrupole and sextupole components of the field
equal to each other. It was found that the effective
boundary of the dipole magnet field is away from the
iron edge of the magnet at a distance equal to 0.0233 m.
While geometric edge of the sector with the angle of 900
and the center coinciding with the design orbit center is
as far away as 0.0247 m from this one. In such way the
position of the real dipole magnet center was specified.
The higher derivatives of the magnetic field depend
on the angle joining of iron plate to the magnet pole
very weakly. The values of the sextupole and octupole
components of the magnetic field in the dipole magnet
of NESTOR equal to:
sextupole component: G2 L/B0 = -1.414 [m-1], octupole
component: G3 L/B0 = -7.1 [m-2], where G2, G3, are sex-
tupole and octupole gradients of the magnetic field re-
spectively, L is effective length of the field, B0 is value
of dipole component of the magnetic field on the reference
orbit.
1
A4 (0,1.8)
A5 (2.94353,3.32444)
2
3
Fig.3. The cross section of pole of the dipole magnet
with cylindrical surface which involves electron beam
reference orbit. The values of parameters are in cm
Fig.4. Face part of the NESTOR dipole magnet: 1 is
dipole magnet face; 2 is magnet pole; 3 is excitation
coil
0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.2
0.4
0.6
0.8
1
S,m
B/B0
Fig.5. Longitudinal distribution of the magnetic field in
the NESTOR dipole magnet
S,m
G/B0
0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1.2
-1
-0.8
-0.6
-0.4
-0.2 S,m
Fig.6. Longitudinal distribution of the quadrupole gra-
dient of the magnetic field in the NESTOR dipole magnet
148
S/B0
S,m
0.05 0.1 0.15 0.2 0.25 0.3 0.35
-15
-10
-5
S,m
Fig.7. Longitudinal distribution of the sextupole gradient
of the magnetic field in the NESTOR dipole magnet
4. MUTUAL EFFECTS OF RING MAGNETIC
ELEMENTS
The calculations were carried out for lens couples:
quadrupole – sextupole, quadrupole - quadrupole, sex-
tupole – sextupole with parameters according to Table 1.
The integral harmonic composition of the magnetic field
for lens couples mentioned above was determined with
MERMAID code [3]. According to calculation results the
mutual lenses effects lead to weak decreasing (of about
3%) of the strength of the main harmonic. Appearance of
higher harmonics was observed only in the case of signif-
icant increase of the geometrical aperture of lenses.
5. DYNAMIC APERTURE NUMERICAL
SIMULATIONS RESULTS
Assuming that the quadrupole component of the mag-
netic field due to 3D magnetic field distribution can be
suppressed by the choice of an angle of an additional plate
fixation the simulation of the dynamic aperture value had
been carried out taking into account the obtained value of
sextupole and octupole components of the field due to 3D
field distributions in bending magnet. The calculation re-
sults show that these components do not restrict the bound-
aries of motion stable area. The value of the dynamic aper-
ture at the interaction point is equal to 3×3 mm. On the
other hand, the growth of the steady state beam size was
observed.
S/B0
S,m
0.05 0.1 0.15 0.2 0.25 0.3 0.35
-400
-200
200
Fig.8. Longitudinal distribution of the octupole gradient
of the magnetic field in the NESTOR dipole magnet
6. CONCLUSIONS
The results of numerical simulations showed that the
3D magnetic field distribution of the dipole magnet devel-
oped in the NSC KIPT does not restrict the dynamic aper-
ture of the X-ray generator NESTOR. The mutual effects
of magnetic lenses in the ring are weak and do not lead to
the effects that can be observed. To complete the investiga-
tions of the 3D magnetic field effects it is needed to calcu-
late magnetic field distribution in the quadrupole lenses. In
order to concern investigations of 3D magnetic field effects
on reference electron beam size in the interaction point the
simulation code is under developing in KIPT.
REFERENCES
1. E. Bulyak, P. Gladkikh, A. Zelinsky et al. Compact
X-ray source based on Compton scattering // Nucl.
Inst. & Methods. 2002, A, № 487, p.241-248.
2. E. Bulyak, P. Gladkikh, A. Zelinsky et al. Kharkov
X-rays Generator Based On Compton Scattering //
Proc. of SRI 2003, to be published.
3. "Mermaid Users's Guide", Sim Limited, Novosibirsk, 1994.
4. А .Mytsykov. Application of conformal representation
for model operation of flat fields created by smooth
poles // Problems of Atomic Scince and Technology
1999. Ser.-NPE, No 1(33) p.102-103 (In Russian).
5. "POISSON Group Programs.User's Guide” // CERN,
1965.
ЭФФЕКТЫ, ОБУСЛОВЛЕННЫЕ ТРЕХМЕРНЫМ РАСПРЕДЕЛЕНИЕМ МАГНИТНОГО ПОЛЯ В
КОМПАКТНОМ ГЕНЕРАТОРЕ ИНТЕНСИВНОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ННЦ ХФТИ
А. Зелинский, A. Мыцыков
Новое поколение интенсивных рентгеновских источников, основанных на малоэнергетичных накопителях электро-
нов, в которых интенсивный лазерный луч взаимодействует с пучком электронов (обратное Комптоновское рассеяние)
позволяет получить жесткое рентгеновское излучение с интенсивностью 1014 фот/с. Одна из особенностей структуры ко-
лец такого типа есть использование магнитных элементов с комбинированными функциями, такими как дипольный маг-
нит с квадрупольной и секступольной компонентой магнитного поля. В комбинации с малым радиусом поворота и вы-
сокой плотностью магнитов в структуре это может уменьшить интенсивность рентгеновского излучения. Статья посвя-
щена изучению влияния 3D эффектов, связанных с развалом поля на краях магнитов, а также эффектов, связанных с вза-
имным влиянием близко расположенных мультипольных линз.
ЕФЕКТИ, ЗУМОВЛЕНІ ТРИВИМІРНИМ РОЗПОДІЛОМ МАГНІТНОГО ПОЛЯ В КОМПАКТНОМУ
ГЕНЕРАТОРІ ІНТЕНСИВНОГО РЕНТГЕНІВСЬКОГО ВИПРОМІНЮВАННЯ ННЦ ХФТІ
А. Зелінський, A. Мициков
Нове покоління інтенсивних рентгенівських джерел, заснованих на малоэнергетичных накопичувачах електронів, у
яких інтенсивний лазерний промінь взаємодіє з пучком електронів (зворотне Комптоновское розсіювання) дозволяють
одержати жорстке рентгенівське випромінювання з інтенсивністю 1014 фот/с. Одна з основних особливостей структури
кілець такого типу є використання магнітних елементів з комбінованими функціями, такими як дипольний магніт із
квадрупольною і секступольной компонентом магнітного поля. У комбінації з малим радіусом повороту і високою
густиною магнітів у структурі це може істотно зменшити інтенсивність рентгенівського випромінювання. Стаття
присвячена вивченню впливу 3D ефектів, зв'язаних з розвалом поля на краях магнітів, а також ефектів зв'язаних із
взаємним впливом близько розташованих мультипольних лінз.
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2.
Series: Nuclear Physics Investigations (43), p.147-149. 147
3D Magnetic Field Effects in THE NSC KIPT Compact Intense X-ray Generator
1. Introduction
2. parameters of magnetic elements of the NESTOR lattice
3. Dipole magnet edge field
4. mutual effects of ring magnetic elements
5. dynamic aperture numerical simulations results
6. conclusionS
References
|