Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes

Isochronous cyclotron CYTRECK intended for a production of nuclear membranes was put into operation in 2002 year in Dubna. The ions with the relation A/Z=5 are accelerated to the energy ∼2.4 MeV/nucleon and extracted at the intensity ∼2⋅10¹¹ ions per second. The calculations of the ions dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Onischenko, L.M., Samsonov, E.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79376
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes / L.M. Onischenko, E.V. Samsonov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 129-131. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79376
record_format dspace
spelling irk-123456789-793762015-04-01T03:02:38Z Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes Onischenko, L.M. Samsonov, E.V. Динамика пучков Isochronous cyclotron CYTRECK intended for a production of nuclear membranes was put into operation in 2002 year in Dubna. The ions with the relation A/Z=5 are accelerated to the energy ∼2.4 MeV/nucleon and extracted at the intensity ∼2⋅10¹¹ ions per second. The calculations of the ions dynamics beginning from the exit of an inflector to their extraction from the cyclotron chamber are examined in the report. Ізохронний циклотрон ЦИТРЕК, призначений для виробництва ядерних мембран працює в Дубні з 2002 р. Іони з відношенням A/Z=5 прискорюються до енергії ∼2.4 МеВ/нукл при інтенсивності ∼2⋅10¹¹ іонів у секунду. У статті приводиться розрахунок динаміки іонів, починаючи від виходу з інфлектора до їхнього виходу з камери прискорювача. Изохронный циклотрон ЦИТРЕК, предназначенный для производства ядерных мембран работает в Дубне с 2002 г. Ионы с отношением A/Z=5 ускоряются до энергии ∼2.4 МэВ/нуклон при интенсивности ∼2⋅10¹¹ ионов в секунду. В статье приводится расчет динамики ионов, начиная от выхода из инфлектора до их вывода из камеры ускорителя. 2004 Article Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes / L.M. Onischenko, E.V. Samsonov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 129-131. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.20.Hm, 29.27.Bd, 83.10.Rs http://dspace.nbuv.gov.ua/handle/123456789/79376 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика пучков
Динамика пучков
spellingShingle Динамика пучков
Динамика пучков
Onischenko, L.M.
Samsonov, E.V.
Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
Вопросы атомной науки и техники
description Isochronous cyclotron CYTRECK intended for a production of nuclear membranes was put into operation in 2002 year in Dubna. The ions with the relation A/Z=5 are accelerated to the energy ∼2.4 MeV/nucleon and extracted at the intensity ∼2⋅10¹¹ ions per second. The calculations of the ions dynamics beginning from the exit of an inflector to their extraction from the cyclotron chamber are examined in the report.
format Article
author Onischenko, L.M.
Samsonov, E.V.
author_facet Onischenko, L.M.
Samsonov, E.V.
author_sort Onischenko, L.M.
title Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
title_short Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
title_full Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
title_fullStr Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
title_full_unstemmed Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
title_sort dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Динамика пучков
url http://dspace.nbuv.gov.ua/handle/123456789/79376
citation_txt Dynamics of heavy ions in the isochronous cyclotron for production of nuclear membranes / L.M. Onischenko, E.V. Samsonov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 129-131. — Бібліогр.: 2 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT onischenkolm dynamicsofheavyionsintheisochronouscyclotronforproductionofnuclearmembranes
AT samsonovev dynamicsofheavyionsintheisochronouscyclotronforproductionofnuclearmembranes
first_indexed 2025-07-06T03:26:44Z
last_indexed 2025-07-06T03:26:44Z
_version_ 1836866501435457536
fulltext BEAM DYNAMICS DYNAMICS OF HEAVY IONS IN THE ISOCHRONOUS CYCLOTRON FOR PRODUCTION OF NUCLEAR MEMBRANES L.M. Onischenko, E.V. Samsonov Joint Institute for Nuclear Research 141980, str.Joliot-Curie, 6, Dubna, Russia E-mail: sams@nusun.jinr.ru Isochronous cyclotron CYTRECK intended for a production of nuclear membranes was put into operation in 2002 year in Dubna. The ions with the relation A/Z=5 are accelerated to the energy ∼2.4 MeV/nucleon and extracted at the intensity ∼2⋅1011 ions per second. The calculations of the ions dynamics beginning from the exit of an inflector to their extraction from the cyclotron chamber are examined in the report. PACS: 29.20.Hm, 29.27.Bd, 83.10.Rs 1. MAIN PARAMETERS OF THE CYCLOTRON CYTRECK is 4-sector compact isochronous cyclo- tron equipped by 14GHz ECR ion source as an injector. Cyclotron has axial injection line, spiral inflector, two accelerating dees and electrostatic extraction system. Some cyclotron parameters are shown in Table and its layout in Fig.1. Main parameters of the CYTRECK Type of accelerated ion A/Z Injection energy (keV/nucl) Extraction energy (MeV/nucl) Average magnetic field (T) Betatron frequencies: νr ; νz Radius of injection (cm) Radius of extraction (cm) Emittances on injection (π mm⋅mrad) Emittances on extraction (π mm⋅mrad) Phase width of the bunch (°RF) Orbital frequency (MHz) Harmonic number Number of dees Angular width of dees (°) Accelerating voltage (kV) 5 3.0 2.4 1.48 1.015; 0.3 ∼3.0 73.0 ∼150 ∼15 ∼20 4.626 4 2 40 50 Fig.1. Layout of the cyclotron vacuum chamber with 4 sectors and 2 dees. ESD1, ESD2 – electrostatic extraction system, FD – ferromagnetic focusing channel, SM – steering magnet 2. CENTRAL REGION Configuration of the central region electrodes has the determining effect on the transverse oscillations of ions. During the analysis of particle dynamics in the central region of CYTRECK a three-dimensional elec- tric field, obtained as a result of numerical simulation was used. In order to get the optimum configuration of center the axial and radial size of the diaphragms (see Fig.2), dimensions of window in the inflector case, and also a width of first and second accelerating gaps were varied. The aim of optimization was obtaining the smal- lest possible amplitudes of radial oscillations after the first five revolutions of beam on acceptable level of the axial losses. Axial losses arise due to axial divergence of the beam just after the inflector exit. Code CENMOT [1] was used for a particle tracking inside this region. Fig.2. Layout of the cyclotron central region After ten changes of the central region geometry the required configuration was chosen. In Fig.3 one can see axial trajectories during 1-st turn. Ion losses on dees and diaphragms are not larger than 40% of injected beam with 20°RF length. Computations show that the maxi- mal amplitude of free radial oscillations after 5 turns is not greater than 5 mm. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.129-131. 129 Fig.3. Axial trajectories of 100 ions for 1-st turn. The ion losses on the dees and diaphragms are neglected 3. MAIN ACCELERATION REGION For calculating of beam dynamics in the basic accel- eration region were undertaken 587 ions, having the amplitude of axial oscillations not more than 8 mm in the center of cyclotron. Calculation was carried out dur- ing 60-70 revolutions, until all ions reached the entrance of the extraction system. In the calculations the analytic- al description [2] of electric field of dees was used. Magnetic field parameters are given in figs. 4,5. Fig.4. Average value Bav and amplitudes of multiple harmonics B4 – B16 of the cyclotron magnetic field Fig. 5. Amplitude b1 and phase f1 of the 1-st harmonic of azimuthal imperfection Fig.6 shows the amplitudes of the free radial oscilla- tions of ions in the dependence on the mean radius of accelerated orbit. It is evident that the amplitude spread increases from 4 to 9 mm (reason – action of the 1-st harmonic of magnetic field). However, for 98% of ions toward the end of the acceleration the amplitude of radi- al oscillations do not exceed 6 mm, that, as it will be shown below, gives good beam parameters at the en- trance of the extraction system. Fig. 6. Amplitudes of free radial oscillations versus ra- dius The results of simulation of the differential probe signal are shown in Fig.7. This probe is located on azi- muth 90° and has lamella width of 1 mm. One sees that the first 9 turns are completely separated, and up 50 turns can be identified in the signal amplitudes. Fig. 7. Signal of differential probe versus radius Frequencies of betatron oscillations are shown in Fig.8. Inside main acceleration region their values com- prise Qr≈1.015, Qz≈0.33. Only at extraction radius 73.0 cm radial frequency crosses resonance value Qr=1 and axial one approaches to Qz=0.5. But due to large ra- dial gain (∼0.7 cm), deterioration of the beam paramet- ers do not occur in this region. Fig. 8. Frequencies of free oscillations versus radius Fig.9 represents phase motion of ions in the main ac- celeration region. These results show that average mag- netic field is formed with high accuracy without using of correction coils. Fig.9. Phase motion of ions versus radius beginning from 2-nd turn 4. EXTRACTION SYSTEM Fig.10 depicts in the coordinates (azimuth - radius) the position of the extraction system relative to the boundary of the circulating beam, shims and magnet pole. Here is shown position of probes, intended for measuring the throw of beam to the entrance of the sys- tem and its parameters after both electrostatic elements. 130 280 290 300 310 320 330 340 350 360 370 70 75 80 85 90 95 100 Central trajectory Probes beam of circulating Boundary FD ESD2 ESD1 Shim Pole Shim R ad iu s (c m ) Azimuth ( o ) Fig.10. Sketch view of extraction system Extraction system consists of three elements: elec- trostatic deflectors ESD1 and ESD2, and passive ferro- magnetic device FD. Deflectors represent itself the seg- ments of the cylindrical capacitors, whose internal plate (septum) is under zero potential, and external under the negative potential by value approximately 50 kV. Ferro- magnetic device consists of three steel plates magnet- ized by the magnetic field of cyclotron. The throw of beam to the entrance of the system is ensured due to ra- dial gain ∼7 mm provided by acceleration. ESD1 provides primary radial deviation of the ex- tracted beam on ∼12 mm from the boundary of circulat- ing one. Inside this element there is no need of creating the focusing gradient of electric field, since beam does not achieve here a dropped fringing field. ESD2 makes additional deviation of beam outside, (on the exit of this element the beam is located already at a distance of about 70 mm from circulating one), and also provides the compensation for the action of the ra- dially defocusing gradient of fringe magnetic field. Basic purpose of FD is the radial beam focusing and additional its deviation outside the vacuum chamber. Fig.11.Beam parameters on phase planes (R, Pr) and (Z, Pz) at the entrance of extraction system Fig.12.Beam parameters on phase planes (X, Px) and (Z, Pz) at the entrance of steering magnet SM Figs.11,12 show phase beam portraits at entrance of ESD1 and steering magnet SM, accordingly. Final beam average energy W=2.4 MeV/A, energy spread ∆W/W=± 1%, transverse emittances εr≈εz≈15 πmm⋅mrad. Ion losses inside the extraction system when it occupies op- timal position do not exceed 15% of the circulating beam. High extraction efficiency imposes the following requirements to the magnetic and accelerating systems. First harmonic of the magnetic field imperfections must be less than 3 G, the amplitude and phase misalignment of dees should be in limits ±0.5 kV and ±5° RF, respect- ively. ACKNOWLEDGEMENTS The authors would like to express their gratitude to N.G.Shakun for the computation of electric field in the central region of the cyclotron. REFERENCES 1. E.V.Samsonov // Proceedings of Workshop on the magnetic field and ion beam dynamics of the VINCY cyclotron, Dubna. 1996, p.156. 2. N.Hazewindus et al. // Nuclear Instruments and Methods. 1974, v.118, p.125. ДИНАМИКА ТЯЖЕЛЫХ ИОНОВ В ИЗОХРОННОМ ЦИКЛОТРОНЕ ДЛЯ ПРОИЗВОДСТВА ЯДЕРНЫХ МЕМБРАН Л.М. Онищенко, Е.В. Самсонов Изохронный циклотрон ЦИТРЕК, предназначенный для производства ядерных мембран работает в Дуб- не с 2002 г. Ионы с отношением A/Z=5 ускоряются до энергии ∼2.4 МэВ/нуклон при интенсивности ∼2⋅ 1011 ионов в секунду. В статье приводится расчет динамики ионов, начиная от выхода из инфлектора до их вывода из камеры ускорителя. ДИНАМІКА ВАЖКИХ ІОНІВ В ІЗОХРОННОМУ ЦИКЛОТРОНІ ДЛЯ ВИРОБНИЦТВА ЯДЕРНИХ МЕМБРАН Л.М. Онищенко, Є.В. Самсонов Ізохронний циклотрон ЦИТРЕК, призначений для виробництва ядерних мембран працює в Дубні з 2002 р. Іони з відношенням A/Z=5 прискорюються до енергії ∼2.4 МеВ/нукл при інтенсивності ∼2⋅1011 іонів у секунду. У статті приводиться розрахунок динаміки іонів, починаючи від виходу з інфлектора до їхнього виходу з камери прискорювача. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.129-131. 131 132 Joint Institute for Nuclear Research 141980, str.Joliot-Curie, 6, Dubna, Russia Main parameters of the CYTRECK 3. MAIN ACCELERATION REGION 4. EXTRACTION SYSTEM ACKNOWLEDGEMENTS