Two-dimensional simulation of dust clouds in a plasma

In this article has been carried numerical simulations of the interaction of the partically ionized argon plasma and a dust cloud, which is situated near the wall in a cylindrical vessel. The plasma and dust dynamics studied in the frame of two-dimensional hydrodynamics model, the charge of dust par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Chutov, Yu.I., Kravchenko, A.Yu., Yurchuk, M.M., Lysyuk, S.M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79384
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Two-dimensional simulation of dust clouds in a plasma / Yu.I. Chutov, A.Yu. Kravchenko, M.M. Yurchuk, S.M. Lysyuk // Вопросы атомной науки и техники. — 2005. — № 2. — С. 73-75. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79384
record_format dspace
spelling irk-123456789-793842015-04-01T03:02:27Z Two-dimensional simulation of dust clouds in a plasma Chutov, Yu.I. Kravchenko, A.Yu. Yurchuk, M.M. Lysyuk, S.M. Basic plasma physics In this article has been carried numerical simulations of the interaction of the partically ionized argon plasma and a dust cloud, which is situated near the wall in a cylindrical vessel. The plasma and dust dynamics studied in the frame of two-dimensional hydrodynamics model, the charge of dust particles is determined acording to the orbit-limited probe model, the potential of the self-consistent electric field is described by Poisson equation. As a result simulations the spatial distributions of dust cloud parameters are obtained at different times. Проведено числовий розрахунок взаємодії частково іонізованої аргонової плазми з пиловим згустком, що утворюється біля стінки в циліндричній камері. Для описання динаміки плазми і пилових частинок використовувалась двовимірна гідродинамічна модель, заряд пилових частинок визначався за допомогою моделі обмежених орбіт, а потенціал самоузгодженого електричного поля описувався рівнянням Пуассона. При аналізі динаміки пилових частинок враховувались електричні сили, а також сили, обумовлені іонною в’язкістю та тертям з нейтральними частинками. В результаті проведеного моделювання одержані просторові розподіли параметрів пилового згустку в різні моменти часу. Проведен численный расчет взаимодействия частично ионизированной аргоновой плазмы с пылевым сгустком, который образуется возле стенки в цилиндрической камере. Для описания динамики плазмы и пылевых частиц использовалась двухмерная гидродинамическая модель, заряд пылевых частиц определялся при помощи модели ограниченных орбит, а потенциал самосогласованного электрического поля описывался уравнением Пуассона. При анализе динамики пылевых частиц учитывались электрические силы, а также силы, обусловленные ионной вязкостью и трением с нейтральными частицами. В результате проведенного моделирования получены пространственные распределения параметров пылевого сгустка в различные моменты времени. 2005 Article Two-dimensional simulation of dust clouds in a plasma / Yu.I. Chutov, A.Yu. Kravchenko, M.M. Yurchuk, S.M. Lysyuk // Вопросы атомной науки и техники. — 2005. — № 2. — С. 73-75. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.27.Lw http://dspace.nbuv.gov.ua/handle/123456789/79384 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Basic plasma physics
Basic plasma physics
spellingShingle Basic plasma physics
Basic plasma physics
Chutov, Yu.I.
Kravchenko, A.Yu.
Yurchuk, M.M.
Lysyuk, S.M.
Two-dimensional simulation of dust clouds in a plasma
Вопросы атомной науки и техники
description In this article has been carried numerical simulations of the interaction of the partically ionized argon plasma and a dust cloud, which is situated near the wall in a cylindrical vessel. The plasma and dust dynamics studied in the frame of two-dimensional hydrodynamics model, the charge of dust particles is determined acording to the orbit-limited probe model, the potential of the self-consistent electric field is described by Poisson equation. As a result simulations the spatial distributions of dust cloud parameters are obtained at different times.
format Article
author Chutov, Yu.I.
Kravchenko, A.Yu.
Yurchuk, M.M.
Lysyuk, S.M.
author_facet Chutov, Yu.I.
Kravchenko, A.Yu.
Yurchuk, M.M.
Lysyuk, S.M.
author_sort Chutov, Yu.I.
title Two-dimensional simulation of dust clouds in a plasma
title_short Two-dimensional simulation of dust clouds in a plasma
title_full Two-dimensional simulation of dust clouds in a plasma
title_fullStr Two-dimensional simulation of dust clouds in a plasma
title_full_unstemmed Two-dimensional simulation of dust clouds in a plasma
title_sort two-dimensional simulation of dust clouds in a plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Basic plasma physics
url http://dspace.nbuv.gov.ua/handle/123456789/79384
citation_txt Two-dimensional simulation of dust clouds in a plasma / Yu.I. Chutov, A.Yu. Kravchenko, M.M. Yurchuk, S.M. Lysyuk // Вопросы атомной науки и техники. — 2005. — № 2. — С. 73-75. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT chutovyui twodimensionalsimulationofdustcloudsinaplasma
AT kravchenkoayu twodimensionalsimulationofdustcloudsinaplasma
AT yurchukmm twodimensionalsimulationofdustcloudsinaplasma
AT lysyuksm twodimensionalsimulationofdustcloudsinaplasma
first_indexed 2025-07-06T03:27:02Z
last_indexed 2025-07-06T03:27:02Z
_version_ 1836866520694652928
fulltext TWO-DIMENSIONAL SIMULATION OF DUST CLOUDS IN A PLASMA Yu.I. Chutov, A.Yu. Kravchenko, M.M. Yurchuk, S.M. Lysyuk Taras Shevchenko Kiev University, Kiev, Ukraine In this article has been carried numerical simulations of the interaction of the partically ionized argon plasma and a dust cloud, which is situated near the wall in a cylindrical vessel. The plasma and dust dynamics studied in the frame of two-dimensional hydrodynamics model, the charge of dust particles is determined acording to the orbit-limited probe model, the potential of the self-consistent electric field is described by Poisson equation. As a result simulations the spatial distributions of dust cloud parameters are obtained at different times. PACS: 52.27.Lw 1. INTRODUCTION The physics of dusty plasmas has been extensively studied in the last decade in view of practical applications in space, as well as laboratory situations. Particular attention has been paid to the study of collective processes, such as the formation of nonlinear structures like solitons, double layers, voids, vortexes and dust clouds with sharp boundary. These phenomena are observed in many capacitively coupled rf devices [1], dc glow discharged devices [2] and recently have been discovered in microgravity experiments [3]. A characteristic feature of bounded dusty plasmas with free boundaries is the expansion process. The one-dimensional expansion of an unmagnetized dusty plasma was examined by [4], [5]. It is necessary note that experimental results shown that dust clouds are not one-dimensional [3] and this feature may causes new phenomena. In this article we investigate the temporal behavior of dust clouds in plasma near a solid wall using two-dimensional hydrodynamic model and a computer simulation. 2. MODEL We consider partially ionized argon plasma in a cylindrical vessel (fig.1). The cloud of dust particles immersed into the plasma near the solid wall. The form of the dust cloud at initial time is a disk. In our model dust grains acquire a charge and influence the potential of the electric field ϕ , which is described by Poisson equation: ( ) 0 1 .i e d den en q nϕ ε ∆ = − − + The wall potential 0ϕ at the bottom of the vessel (Fig.1) is floating. The other walls of the vessel are grounded ( 0ϕ = ). Fig.1 Electrons are assumed to be in a thermal equilibrium; therefore their density satisfies the Boltzmann distribution ne=neo⋅exp ej kT e , where 0en is the electron density far away from the charged wall. Ions and dust particles are treated as a cold fluid, governed by the continuity and the momentum conservation equations ( )i i i i d n Idiv n w n t e ∂ ∂ + = −r , ¶ ni ¶ t div n i wh=-Y i nd , i i i i i i id wm n w w en F t ∂ ϕ ∂ й щ+ = − +С Ск ъл ы r rr r , d d d d d d d id n wm n w w q n F F t ∂ ϕ ∂ й щ+ = − − +С Ск ъл ы r r rr r . The dust charge dq is determined by the charging currents ( )d d d i e q w q I I t ∂ ∂ + = −Сr . Here in , dn are ion and dust densities, iwr , dwr are drift velocities of ion and dust fluids. According to the orbit-limited probe model, the electron and ion charging currents eI and iI are determined by local electron and ion densities, as well as the potential difference between the grain surface and the local plasma. They are given by 2 8 ( )e e d e e d e kTI r e n K q m π π = − , I i=πrd 2 e 8 kT i πmi n i1 − eqd r d kT i , Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 73-75 73 plasma 0ϕ ϕ= 0ϕ = dust cloud sheath where ( ) exp d e d d e eqK q r kT ж ц = з ч и ш when 0dq < and ( ) 1 /e d d d eK q eq r T= + when 0dq > . We assume that the forces on the dust consist of electrostatic force, ion drug forces, and neutral collision force. The ion-drag force idF r consists of the collection c idF r and orbit o idF r components. The collection force is a result of the momentum transfer from the ions collected by the particle, so that 2 ,c i i i i i cF n m w w bπ= r r and the orbit force is conditioned by momentum transfer from the ions of orbital motion around the grain 2 / 24o i i i i iF n m w w bππ= Γ r r r , where 2 / 2 /d i ib eq m wπ = is the orbital impact parameter and 2 2 2 2 1/ 2 / 2 / 2ln[( ) /( )]d cb b bπ πλΓ = + + is the Coulomb logarithm integrated over the interval from collection impact parameter to Debye radius dλ . The neutral gas collision force nF r is given by: 216 1 3 8 n n n n th r n TF w w π πж ц= +з чи ш r r , where nwr is neutral gas velocity, thw is neutral gas mean thermal velocity, ,n nn T , and nm are the neutral gas density, temperature, and mass, respectively. The modified method of big particles [6] is used for the computer modeling of this problem. In this method the complex set of equations is separated on simpler components which describes separated physical processes. The general solution consists of additive members of time influences of each process on spatial parameter distributions. Each process is simulated with the corresponded minimum characteristic time what allows to obtain higher simulation precision. 3. RESULTS We simulated the evolution of the two-dimensional dust cloud using the large particles method [5]. Calculations were carried out for following plasma parameters: nio=neo=1012cm-3, 1eT eV= , 0.1dr mµ= , nd=108cm-3, nn=1016cm-3. The length and the radius of the vessel are L=10cm and R0=2.5cm corresponding. Figure 2a shows the spatial distribution of dust density at 300pitω = after the beginning of the dust cloud expansion. The dust density is normalized on the ion density in the unperturbed plasma; the spatial coordinate is normalized on Debye radius. We can see that the density of dust particles is not uniform along radius. Its maximum is at axis of symmetry ( 0r = ). Expansion of dust cloud is carried out radially. The dust cloud doesn’t expand along axial axis in consequence of the balance of electrical and viscosity forces. It is confirmed by fig.2b, where distributions of dust density along axial axis are shown. These distributions are invariable during the long time interval. 60 80 100 0 1 2 3 4 5 twpi=200 500 700 x nd*104 Fig. 2. The spatial distributions of dust density (a) and electrical potential (b) at tωpi=300 The electrical potential ϕ is shown in figure 1b as a function of radius r and axial coordinate x . Here the potential is normalized on the characteristic potential ekT e . We can see that at the boundary of dust cloud double 74 a b c layers are formed. These double layers cause the capture of dust particles in some region near the wall. REFERENCES 1. H.Thomas, G.E. Morfill, V. Demmel, J.Goree, B.Feuerbacher, D. Mohlman // Phys. Rev. Lett. 1994, v.73, N5, p.652-655. 2. V.E. Fortov, A.P. Nefedov, V.M. Torchinskii, V.I.Molotkov at al. // JETP Lett. 1996, v.64, N2, p.92-98. 3. V.N. Tsytovich, S.V. Vladimirov, G.E. Morfill, J. Goree // Phys. Rev. E63. 56609 (2001). 4. R. Bharuthram, N.N.Rao // Planet Space Sci. 1995, v.43, p.1079. 5. R.Bharuthram, N.N.Rao, S.R.Pillay // IEEE Transactions on Plasma Sci. 2001, v.29, N2, p.164-174. 6. O.M.Belozerkovsky, Yu.M.Davydov. Method of big particles in the gas dynamic. M.: “Atomizdat”. 1982. ДВУХМЕРНОЕ МОДЕЛИРОВАНИЕ ПЫЛЕВЫХ СГУСТКОВ В ПЛАЗМЕ Ю.И. Чутов, А.Ю. Кравченко, Н.М. Юрчук, С.Н. Лысюк Проведен численный расчет взаимодействия частично ионизированной аргоновой плазмы с пылевым сгустком, который образуется возле стенки в цилиндрической камере. Для описания динамики плазмы и пылевых частиц использовалась двухмерная гидродинамическая модель, заряд пылевых частиц определялся при помощи модели ограниченных орбит, а потенциал самосогласованного электрического поля описывался уравнением Пуассона. При анализе динамики пылевых частиц учитывались электрические силы, а также силы, обусловленные ионной вязкостью и трением с нейтральными частицами. В результате проведенного моделирования получены пространственные распределения параметров пылевого сгустка в различные моменты времени. ДВУХВИМІРНЕ МОДЕЛЮВАННЯ ПИЛОВИХ ЗГУСТКІВ У ПЛАЗМІ Ю.І. Чутов, О.Ю. Кравченко, М.М. Юрчук, С.М. Лисюк Проведено числовий розрахунок взаємодії частково іонізованої аргонової плазми з пиловим згустком, що утворюється біля стінки в циліндричній камері. Для описання динаміки плазми і пилових частинок використовувалась двовимірна гідродинамічна модель, заряд пилових частинок визначався за допомогою моделі обмежених орбіт, а потенціал самоузгодженого електричного поля описувався рівнянням Пуассона. При аналізі динаміки пилових частинок враховувались електричні сили, а також сили, обумовлені іонною в’язкістю та тертям з нейтральними частинками. В результаті проведеного моделювання одержані просторові розподіли параметрів пилового згустку в різні моменти часу. 75