Femtosecond laser plasma: review of investigation and calculational model

Review of experimental and theoretical investigation of physical processes in femtosecond laser plasma is presented. Such effects, as X-ray and electric-magnetic wave emission, high energy electron and ion beams are described. It isshown that ultrashort laser pulse with duration comparable to period...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Bugrov, N., Kholod, S., Zaharov, N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79531
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Femtosecond laser plasma: review of investigation and calculational model / N. Bugrov, S. Kholod, N. Zaharov // Вопросы атомной науки и техники. — 2005. — № 2. — С. 94-95. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79531
record_format dspace
spelling irk-123456789-795312015-04-03T03:02:13Z Femtosecond laser plasma: review of investigation and calculational model Bugrov, N. Kholod, S. Zaharov, N. Plasma dynamics and plasma wall interaction Review of experimental and theoretical investigation of physical processes in femtosecond laser plasma is presented. Such effects, as X-ray and electric-magnetic wave emission, high energy electron and ion beams are described. It isshown that ultrashort laser pulse with duration comparable to period of wave oscillation (lessthan a few femtoseconds) is absorbing by inner electronsin contrast to absorption of more lasting laser pulses by outer electrons. The problem of mathematical modelling of these processes and corresponding computer code development is observed. Technological applications, such as production of high power X-ray and particles plasmassources, laser precision shaping and machining of different materials are discussed. Представлено огляд експериментальних і теоретичних досліджень фізичних процесів, що відбуваються у фемтосекундній лазерній плазмі. Описано такі ефекти, як рентгенівське й електромагнітне випромінювання, високоенергетичні електронні й іонні пучки. Показано, що ультракороткий лазерний імпульс тривалістю, порівнянною з періодом коливання хвилі (меншою ніж декілька фемтосекунд), поглинається внутрішніми електронами, на відміну від більш тривалих імпульсів, що поглинаються зовнішніми електронами. Розглянуто задачу математичного моделювання цих процесів і створення відповідного комп'ютерного коду. Обговорено технологічні аспекти, такі, як створення могутніх джерел рентгенівського випромінювання і плазми, формування лазерного пучка й обробка різних матеріалів. Представлен обзор экспериментальных и теоретических исследований физических процессов, происходящих в фемтосекундной лазерной плазме. Описаны такие эффекты, как рентгеновское и электромагнитное излучение, высокоэнергетичные электронные и ионные пучки. Показано, что ультракороткий лазерный импульс длительностью, сравнимой с периодом колебания волны (меньшей, чем несколько фемтосекунд), поглощается внутренними электронами, в отличие от более продолжительных импульсов, которые поглощаются внешними электронами. Рассмотрена задача математического моделирования этих процессов и создания соответствующего компьютерного кода. Обсуждены технологические аспекты, такие, как создание мощных источников рентгеновского излучения и плазмы, формирование лазерного пучка и обработка различных материалов. 2005 Article Femtosecond laser plasma: review of investigation and calculational model / N. Bugrov, S. Kholod, N. Zaharov // Вопросы атомной науки и техники. — 2005. — № 2. — С. 94-95. — Бібліогр.: 4 назв. — англ. 1562-6016 PASC 52.38.-r; 52.38.Mf; 52.38.Ph; 52.50.Jm http://dspace.nbuv.gov.ua/handle/123456789/79531 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma dynamics and plasma wall interaction
Plasma dynamics and plasma wall interaction
spellingShingle Plasma dynamics and plasma wall interaction
Plasma dynamics and plasma wall interaction
Bugrov, N.
Kholod, S.
Zaharov, N.
Femtosecond laser plasma: review of investigation and calculational model
Вопросы атомной науки и техники
description Review of experimental and theoretical investigation of physical processes in femtosecond laser plasma is presented. Such effects, as X-ray and electric-magnetic wave emission, high energy electron and ion beams are described. It isshown that ultrashort laser pulse with duration comparable to period of wave oscillation (lessthan a few femtoseconds) is absorbing by inner electronsin contrast to absorption of more lasting laser pulses by outer electrons. The problem of mathematical modelling of these processes and corresponding computer code development is observed. Technological applications, such as production of high power X-ray and particles plasmassources, laser precision shaping and machining of different materials are discussed.
format Article
author Bugrov, N.
Kholod, S.
Zaharov, N.
author_facet Bugrov, N.
Kholod, S.
Zaharov, N.
author_sort Bugrov, N.
title Femtosecond laser plasma: review of investigation and calculational model
title_short Femtosecond laser plasma: review of investigation and calculational model
title_full Femtosecond laser plasma: review of investigation and calculational model
title_fullStr Femtosecond laser plasma: review of investigation and calculational model
title_full_unstemmed Femtosecond laser plasma: review of investigation and calculational model
title_sort femtosecond laser plasma: review of investigation and calculational model
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Plasma dynamics and plasma wall interaction
url http://dspace.nbuv.gov.ua/handle/123456789/79531
citation_txt Femtosecond laser plasma: review of investigation and calculational model / N. Bugrov, S. Kholod, N. Zaharov // Вопросы атомной науки и техники. — 2005. — № 2. — С. 94-95. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bugrovn femtosecondlaserplasmareviewofinvestigationandcalculationalmodel
AT kholods femtosecondlaserplasmareviewofinvestigationandcalculationalmodel
AT zaharovn femtosecondlaserplasmareviewofinvestigationandcalculationalmodel
first_indexed 2025-07-06T03:33:05Z
last_indexed 2025-07-06T03:33:05Z
_version_ 1836866901281603584
fulltext FEMTOSECOND LASER PLASMA: REVIEW OF INVESTIGATION AND CALCULATIONAL MODEL N. Bugrov, S. Kholod, N. Zaharov CIPT DM RF, Russia Review of experimental and theoretical investigation of physical processes in femtosecond laser plasma is presented. Such effects, as X-ray and electric-magnetic wave emission, high energy electron and ion beams are described. It is shown that ultrashort laser pulse with duration comparable to period of wave oscillation (less than a few femtoseconds) is absorbing by inner electrons in contrast to absorption of more lasting laser pulses by outer electrons. The problem of mathematical modelling of these processes and corresponding computer code development is observed. Technological applications, such as production of high power X-ray and particles plasmas sources, laser precision shaping and machining of different materials are discussed. PASC 52.38.-r; 52.38.Mf; 52.38.Ph; 52.50.Jm PROCESSES OF INTERACTION OF LASER RADIATION WITH SUBSTANCE The increasing amount of the works devoted to femtosecond laser plasma physics in last time, indicate to new achievements in this area, both regarding to theoretical researches, and regarding to development of applied problems. Effects of interaction of ultrashort laser radiation with the condensed environment can be illustrated by following circuit. Thermal particles to 2 keV Fast electrons 1 keV – 20 MeV Soft X-rays 100 eV – 2 keV Hard X-rays 2 keV – 1 MeV Fast ions 10 MeV Laser pulse absorption and reflection At interaction of a intense (q = 1016-1020 W/cm2) femtosecond laser pulse with condensed matter, the thin layer of solid density plasma (~ 0,1-1 mm), cold ions and hot (more 1 keV) electrons is formed. Therefore it is necessary to take into account mechanisms of plasma formation and absorption of laser radiation in this layer of plasma. PLASMA OPTICAL PROPERTIES Researches show [1], that absorptive ability formed near- surface plasmas depends on intensity, length of a wave and polarization of laser radiation, angle of its falling on a target and characteristics of the target. The value of absorption coefficient is from 20 % to 60 % and has the maximum for the p-polarized laser radiation falling under a angle ∼ 60°. So, at fig.1 the dependence of reflection coefficient Al-plasma versus angle of laser pulse falling is shown. GENERATION OF X-RAY RADIATION Fast electrons, due to the big length of free run, are capable to penetrate into cold target area before front of a thermal wave. Thus, as bremsstrahlung at collision with cold ions, as ruled radiation at knocking-out of electrons from K-shells is formed. The bremsstrahlung turns out as a continuum in an interval 0,1 keV – 1 MeV and depends on laser intensity and parameters of plasma whereas radiation from K- and other internal nuclear shells can have energy 1 – 100 keV and depends on nuclear number of a target [2]. Soft X-ray emission occurs both in lines, and in a continuous spectrum of bremsstrahlung, and can occupy time, much greater (~ 20 times), than duration of a laser pulse. For example, in experiments with the XeCl-laser (λ = 0.308 µm, q = 1017 W/cm2) and metal targets, X-ray pulses with energy more than 200 eV and duration about 7 ps have been received, whereas duration of a laser pulse was equal 500 fs. Al 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 Θ° R 1 2 Fig. 1. Reflection coefficient of Al-plasma versus angle of laser pulse falling (q = 2,5∙1015 W/cm2, λ = 0,248 µm, τp = 200 fs, 1 – s-polarization, 2 – p-polarization, lines – calculation, points – experiment) Generation of hard X-ray is carried out during of the most laser pulse inside of a small angle from a direction of fast electrons movement. The output of hard X-ray depends on charging number of target atoms as Z3/2 (see figure 2) while the temperature of electronic component formed in plasma poorly depends on structure of a target and at intensity of laser radiation and is ~ 4 keV for q~ 1016 W/cm2 and various materials: from Si (Z = 14) up to Te (Z = 73). 0 3 6 9 12 15 18 0 20 40 60 80 Ζ 8,7 keV 13 keV 15 keV 20 keV Si Fe G aA s Pd Ta Fig. 2. Dependence of X-ray output from charging number of target atoms ELECTROMAGNETIC PULSE GENERATION Taking off from a target fast electrons create electromagnetic fields which aspire to return them back. 94 Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. 2. P. 94-95№ Electron’s movement in the self-coordinated electromagnetic fields outside of a target can lead to dipole radiation of an electromagnetic wave with ultrashort duration. In [3] performed calculations for factor of fast electron energy transformation to electromagnetic wave 10-1 – 10-3 and spot radius r0 = 5 – 20 µm. The main part of electrons is locked by an electric field in area with the characteristic size about 1 micron near to an irradiated surface. Most high energy electrons overcome the specified area and are turned back to a target at the further movement. Thus the part from them achieves a surface and is absorbed by it. Result of such non-uniform (along an axis 0z) movements of electrons is generation of an electromagnetic wave. In a considered case there are all necessary conditions for dipole radiation. GENERATION OF FAST PARTICLES BEAMS At laser pulse interaction with the condensed matter the fast ions beam is formed. The main mechanism is an acceleration of ions by induced electrostatic fields in plasma of targets. Thus fast electrons will move into vacuum and accelerate ions by means of ambipolar fields. The calculations [1] show, that at increase of femtosecond laser intensity more than 1017 W/cm2 the ponderomotive pressure of a laser beam starts to exceed pressure of plasma, and ions get a component of speed directed into solid. ENERGY DISTRIBUTION The part of the laser energy, expended to formation of electronic and ionic beams, X-ray and electromagnetic radiation, is estimated for various parameters of a laser pulse. It is shown that the factor of transformation of laser radiation to fast electrons is about 10 % and ~ 1-3 % of laser energy are capable to be transformed to energy of ions. The factor of conversion of laser radiation to soft X- ray can achieve 2 %, and to hard X-ray – 0,1 %. In turn, the factor of transformation of energy of fast electrons in dipole electromagnetic wave can achieve 10 %. It is experimentally established [4], that the ionic beam is defined at first by atoms of the impurity on a material surface (the pollution, adsorbed gases: C+, C+2, H+). ULTRAFAST LASER PULSE ABSORPTION Process of absorption of laser pulses which duration τp, comparable to the period of a laser electromagnetic wave (less several femtoseconds) has quantum character. The main influence in this case, renders such parameter, as the ratio of laser pulse duration to a cycle time of electron on an orbit τp/τe (Fig.3). The value τp/τe is less, the probability of absorption of radiation quantum by electron is less. Therefore practically only nearest to a nucleus electrons can interact with ultrashort laser pulses. The exhaustive model of such abnormal absorption of radiation till is not developed now. 0 0,2 0,4 0,6 0,8 1 0 0,5 1 1,5 2 τ p /t e P abs Fig. 3. Probability of absorption of 1 fs laser pulse by electrons of carbon TECHNOLOGY APPLICATIONS Examples of technology applications are drilling ultra small apertures, precision processing of surfaces, creation of ultra-thin films, production of high power X-ray and particles plasmas sources. REFERENCES 1. V.M. Velichko, V.D. Urlin, B.P. Yakutov // Kvantovaya electronika. 2000, v.30, № 10, p.889-895. 2. A.A. Andreev, A.I. Zapysov, A.V. Tcharuhshev, V.E.Yashin // Izvestiya AN. Seriya fizicheskaya, (63), 1999, p. 1239. 3. I.A. Litvinenko, V.A.Lykov // Pis’ma v ZhTF. 1998, v.24, N5, p. 84-88. 4. P.L. Shkolnikov, A. E. Kaplan, A. Pukhov et al. // Appl. Phys. Lett. 1997, v.71, p.3471. ФЕМТОСЕКУНДНАЯ ЛАЗЕРНАЯ ПЛАЗМА: ОБЗОР ИССЛЕДОВАНИЙ И ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ Н. Бугров, С. Холод, Н. Захаров Представлен обзор экспериментальных и теоретических исследований физических процессов, происходящих в фемтосекундной лазерной плазме. Описаны такие эффекты, как рентгеновское и электромагнитное излучение, высокоэнергетичные электронные и ионные пучки. Показано, что ультракороткий лазерный импульс длительностью, сравнимой с периодом колебания волны (меньшей, чем несколько фемтосекунд), поглощается внутренними электронами, в отличие от более продолжительных импульсов, которые поглощаются внешними электронами. Рассмотрена задача математического моделирования этих процессов и создания соответствующего компьютерного кода. Обсуждены технологические аспекты, такие, как создание мощных источников рентгеновского излучения и плазмы, формирование лазерного пучка и обработка различных материалов. ФЕМТОСЕКУНДНА ЛАЗЕРНА ПЛАЗМА: ОГЛЯД ДОСЛІДЖЕНЬ І ОБЧИСЛЮВАЛЬНА МОДЕЛЬ М. Бугров, С. Холод, М. Захаров Представлено огляд експериментальних і теоретичних досліджень фізичних процесів, що відбуваються у фемтосекундній лазерній плазмі. Описано такі ефекти, як рентгенівське й електромагнітне випромінювання, високоенергетичні електронні й іонні пучки. Показано, що ультракороткий лазерний імпульс тривалістю, порівнянною з періодом коливання хвилі (меншою ніж декілька фемтосекунд), поглинається внутрішніми електронами, на відміну від більш тривалих імпульсів, що поглинаються зовнішніми електронами. Розглянуто задачу математичного моделювання цих процесів і створення відповідного комп'ютерного коду. Обговорено 95 технологічні аспекти, такі, як створення могутніх джерел рентгенівського випромінювання і плазми, формування лазерного пучка й обробка різних матеріалів. 96