Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473

The lithium lines at 6708 Å for two sharp-lined roAp stars γ Equ and HD 166473 and at 6103 Å for γ Equ were analyzed in high resolution spectra. Three spectral synthesis codes – STARSP, ZEEMAN2, and SYNTHM – were used. New lines of the rare-earth elements from the DREAM database and lines calculated...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Shavrina, A., Polosukhina, N., Khan, S., Pavlenko, Ya., Khalack, V., Wade, G.A., Quine, t P., Mikhailitska, N., Yushchenko, A., Gopka, V., Kudryavtsev, D.
Формат: Стаття
Мова:English
Опубліковано: Головна астрономічна обсерваторія НАН України 2005
Назва видання:Кинематика и физика небесных тел
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79662
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473 / A. Shavrina, N. Polosukhina, S. Khan, Ya. Pavlenko, V. Khalack, G.A. Wade, P. Quinet, N. Mikhailitska, A. Yushchenko, V. Gopka, D. Kudryavtsev // Кинематика и физика небесных тел. — 2005. — Т. 21, № 5-додаток. — С. 295-298. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79662
record_format dspace
spelling irk-123456789-796622015-04-04T03:02:11Z Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473 Shavrina, A. Polosukhina, N. Khan, S. Pavlenko, Ya. Khalack, V. Wade, G.A. Quine, t P. Mikhailitska, N. Yushchenko, A. Gopka, V. Kudryavtsev, D. MS3: Physics of Stars and Galaxies The lithium lines at 6708 Å for two sharp-lined roAp stars γ Equ and HD 166473 and at 6103 Å for γ Equ were analyzed in high resolution spectra. Three spectral synthesis codes – STARSP, ZEEMAN2, and SYNTHM – were used. New lines of the rare-earth elements from the DREAM database and lines calculated on the basis of the NIST energy levels were included. Magnetic splitting and other line broadening processes were taken into account. Enhanced abundances of lithium in the atmospheres of the stars and high estimates of ⁶Li/⁷Li ratio (0.2 ÷ 0.5) can be explained by the Galactic Cosmic Ray (GCR) production due to spallation reactions and the preservation of original ⁶Li and ⁷Li by strong magnetic fields. 2005 Article Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473 / A. Shavrina, N. Polosukhina, S. Khan, Ya. Pavlenko, V. Khalack, G.A. Wade, P. Quinet, N. Mikhailitska, A. Yushchenko, V. Gopka, D. Kudryavtsev // Кинематика и физика небесных тел. — 2005. — Т. 21, № 5-додаток. — С. 295-298. — Бібліогр.: 16 назв. — англ. 0233-7665 http://dspace.nbuv.gov.ua/handle/123456789/79662 en Кинематика и физика небесных тел Головна астрономічна обсерваторія НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic MS3: Physics of Stars and Galaxies
MS3: Physics of Stars and Galaxies
spellingShingle MS3: Physics of Stars and Galaxies
MS3: Physics of Stars and Galaxies
Shavrina, A.
Polosukhina, N.
Khan, S.
Pavlenko, Ya.
Khalack, V.
Wade, G.A.
Quine, t P.
Mikhailitska, N.
Yushchenko, A.
Gopka, V.
Kudryavtsev, D.
Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473
Кинематика и физика небесных тел
description The lithium lines at 6708 Å for two sharp-lined roAp stars γ Equ and HD 166473 and at 6103 Å for γ Equ were analyzed in high resolution spectra. Three spectral synthesis codes – STARSP, ZEEMAN2, and SYNTHM – were used. New lines of the rare-earth elements from the DREAM database and lines calculated on the basis of the NIST energy levels were included. Magnetic splitting and other line broadening processes were taken into account. Enhanced abundances of lithium in the atmospheres of the stars and high estimates of ⁶Li/⁷Li ratio (0.2 ÷ 0.5) can be explained by the Galactic Cosmic Ray (GCR) production due to spallation reactions and the preservation of original ⁶Li and ⁷Li by strong magnetic fields.
format Article
author Shavrina, A.
Polosukhina, N.
Khan, S.
Pavlenko, Ya.
Khalack, V.
Wade, G.A.
Quine, t P.
Mikhailitska, N.
Yushchenko, A.
Gopka, V.
Kudryavtsev, D.
author_facet Shavrina, A.
Polosukhina, N.
Khan, S.
Pavlenko, Ya.
Khalack, V.
Wade, G.A.
Quine, t P.
Mikhailitska, N.
Yushchenko, A.
Gopka, V.
Kudryavtsev, D.
author_sort Shavrina, A.
title Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473
title_short Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473
title_full Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473
title_fullStr Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473
title_full_unstemmed Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473
title_sort lithium and its isotopic ratio ⁶li/⁷li in the atmospheres of sharp-lined roap stars γ equulei and hd 166473
publisher Головна астрономічна обсерваторія НАН України
publishDate 2005
topic_facet MS3: Physics of Stars and Galaxies
url http://dspace.nbuv.gov.ua/handle/123456789/79662
citation_txt Lithium and its isotopic ratio ⁶Li/⁷Li in the atmospheres of sharp-lined roAp stars γ Equulei and HD 166473 / A. Shavrina, N. Polosukhina, S. Khan, Ya. Pavlenko, V. Khalack, G.A. Wade, P. Quinet, N. Mikhailitska, A. Yushchenko, V. Gopka, D. Kudryavtsev // Кинематика и физика небесных тел. — 2005. — Т. 21, № 5-додаток. — С. 295-298. — Бібліогр.: 16 назв. — англ.
series Кинематика и физика небесных тел
work_keys_str_mv AT shavrinaa lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT polosukhinan lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT khans lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT pavlenkoya lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT khalackv lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT wadega lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT quinetp lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT mikhailitskan lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT yushchenkoa lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT gopkav lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
AT kudryavtsevd lithiumanditsisotopicratio6li7liintheatmospheresofsharplinedroapstarsgequuleiandhd166473
first_indexed 2025-07-06T03:41:07Z
last_indexed 2025-07-06T03:41:07Z
_version_ 1836867406076575744
fulltext LITHIUM AND ITS ISOTOPIC RATIO 6Li/7Li IN THE ATMOSPHERES OF SHARP-LINED roAp STARS γ EQUULEI and HD 166473 A. Shavrina1, N. Polosukhina2, S. Khan3, Ya. Pavlenko1, V. Khalack1, G. A. Wade4, P. Quinet5, N. Mikhailitska1, A. Yushchenko6,7, V. Gopka6, D. Kudryavtsev8 1Main Astronomical Observatory, NAS of Ukraine 27 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine e-mail: shavrina@mao.kiev.ua 2Scientific-Research Institute “Crimean Astrophysical Observatory”, Ukraine e-mail: polo@crao.crimea.ua 3Tavrian National University, Simpheropol, Ukraine e-mail: serg@starsp.org 4Physics Department, Royal Military College of Canada e-mail: gregg.wade@rmc.ca 5Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Belgium e-mail: Pascal.Quinet@umh.ac.be 6Astronomical Observatory, Odesa National University, Ukraine e-mail: yua@odessa.net, gopka@arktur.tenet.odessa.ua 7Astrophysical Research Center for the Structure and Evolution of the Cosmos Sejong University, 143-747 Seoul, (South) Korea 8Special Astrophysical Observatory, Russian Academy of Sciences Nizhny Arkhyz, Zelenchuk, 369167 Karachaevo-Cherkesiya, Russia The lithium lines at 6708 Å for two sharp-lined roAp stars γ Equ and HD 166473 and at 6103 Å for γ Equ were analyzed in high resolution spectra. Three spectral synthesis codes – STARSP, ZEEMAN2, and SYNTHM – were used. New lines of the rare-earth elements from the DREAM database and lines calculated on the basis of the NIST energy levels were included. Magnetic split- ting and other line broadening processes were taken into account. Enhanced abundances of lithium in the atmospheres of the stars and high estimates of 6Li/7Li ratio (0.2 ÷ 0.5) can be explained by the Galactic Cosmic Ray (GCR) production due to spallation reactions and the preservation of original 6Li and 7Li by strong magnetic fields. INTRODUCTION This research was carried out in the framework of the project “Lithium in CP stars” [8]. HD 201601 (γ Equ) and HD 166473, both roAp stars, are characterized by sharp lines in their spectra, by the strong overabundance of the rare-earth elements, and by strong magnetic fields (about 4.1 kG and 8.6 kG, respectively). The sharp lines in the spectra of both stars result from their slow rotation: their periods are approximately 4 years for HD 166473 and 77 years for γ Equ. OBSERVED SPECTRA The spectra of HD 166473 were obtained by P. North on March 8–14, 1996 with the 1.4-m Coude Auxiliary Telescope (CAT) and Coude Echelle Spectrometer (CES) at La Silla. The detector was the ESO CCD N 34 with 2048 pixels along the dispersion direction (pixel size are 15 μm× 15 μm), which provides the resolving power R = 100 000 and the wavelength range of 58.2 Å for the central wavelengths 6705, 6645, and 6150 Å. In Table 1, we give the epoch, exposure time, and wavelength coverage of used spectra. c© A. Shavrina, N. Polosukhina, S. Khan, Ya. Pavlenko, V. Khalack, G. A. Wade, P. Quinet, N. Mikhailitska, A. Yushchenko, V. Gopka, D. Kudryavtsev, 2004 295 Table 1. The list of observations for HD 166473 N Date, d m yr T , UT hr min Exp., min HJD, 2450000+ Range 10 08.3.1996 8 23 80 150.876 6675–6735 Å 20 09.3.1996 8 48 50 151.883 6675–6735 Å 31 10.3.1996 8 45 60 152.884 6675–6735 Å 45 11.3.1996 8 48 60 153.886 6675–6735 Å 54 12.3.1996 8 38 60 154.880 6675–6735 Å 73 13.3.1996 8 52 50 155.886 6120–6180 Å 87 14.3.1996 8 36 60 156.878 6615–6675 Å 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 6706 6706.5 6707 6707.5 6708 6708.5 re si du al in te ns ity , r wavelength, A Ce II I Pr III I Li I I Li I I 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 6147 6147.5 6148 6148.5 6149 6149.5 re si du al in te ns ity , r wavelength, A Cr II I Pr II I Fe II I Fe II I a) HD 166473, Li I 6708 Å b) HD 166473, Li I 6708 Å, Fe II 6149 Å Figure 1. For HD 166473 (a) Li I 6708 Å, black: observed spectrum; red line: a calculated spectrum by taking into account lines of only the main isotope 7Li, log N(Li)/N(H) = −8.2; green line: spectrum with the ratio 6Li/7Li = 0.4, log N(Li)/N(H) = −8.3. The positions of those lines, which are the main contributors to the absorption, are marked at the top of the figure. Note that the Pr III line model profile fits to the observed one for magnetic field parameters Br, Bm, Bl = 3000, 5500, 0 G, respectively, while for the Li I line profile these parameters are 4000, 9000, 0 G, respectively. (b) Fe II 6147 Å and 6149 Å lines, Br = 4.8 kG, Bm = 4.9 kG, Bl = 0 kG. 0.75 0.8 0.85 0.9 0.95 1 6706 6706.5 6707 6707.5 6708 6708.5 re si du al in te ns ity , r wavelength, A Ce II I Pr III I Li I I Li I I 0.7 0.75 0.8 0.85 0.9 0.95 1 6102 6102.5 6103 6103.5 6104 6104.5 re si du al in te ns ity , r wavelength, A Fe I I Ca I I Fe I I Fe II I Li I I a) γ Equ, Li I 6708 Å b) γ Equ, Li I 6103 Å Figure 2. For γ Equ (a) Li I 6708 Å, blue line: log N(Li) = −7.95, 6Li/7Li = 0.5; red line: log N(Li) = −7.80, only 7Li. (b) Li I 6103 Å, 6103 Å, log N(Li)/N(H) = −8.0 and log N(Li)/N(H) = −8.3. The observations of γ Equ were obtained on March 9–10, 2004 by D. Kudryavtsev with the 6-m BTA telescope and Nasmyth Echelle Spectrometer (NES, Panchuk et al. [9]) of the Russian Special Astrophysical Observatory. They consist of the continuous sequences of 25 and 16 spectra for March 9 and 10, respectively, with exposure times of about 3 min that allows one to analyze the pulsational variability of spectral lines. The spectra with signal-to-noise ratio of above 80 (15 and 4 spectra for March 9 and 10, respectively) did not show any significant variability of the 6708 Å lithium line profiles and were selected for the analysis. In Fig. 2, we show an averaged spectrum for March 9, which almost coincides with the similar one for March 10. 296 Table 2. Results of the determination of the Li abundances, 6Li/7Li ratio, magnetic field parameters as well as the v sin i determination HD 166473 HD 201601 Teff/log g/[min] 7750/4.0/0 7750/4.0/0 N(Fe I) 6103 Å – 7.80 N(Fe II) 6149 Å 7.60 7.50 N(Li) 6708 Å 3.7 3.8 N(Li) 6103 Å – 4.0 6Li/7Li, 6708 Å 0.4: 0.5: Br/Bm/Bl/ (kG) Fe II 6149 Å 4.8/4.9/0 3.5/2.6/0.8 Pr III 6706.7 Å 3.0/5.5/0 2.7/3.5/0 Ca I 6102.7 Å – 0/4.0/0 v sin i (km s−1) (Fe II) 3.0 0.5 v sin i (km s−1) (Pr III) 5.0 2.5 SYNTHETIC SPECTRA These stars, HD 166473 and γ Equ, with the strong 6708 Å lithium doublets are not well studied. We analyzed their spectra in detail in a narrow range near 6708 Å by the method of synthetic spectra, taking into account the Zeeman magnetic splitting and blending by REE lines. The additional broadening, likely pulsational, was described by the parameter v sin i. Spectral calculations for both stars were carried out using the model atmospheres of [7] with parameters from [3, 10, 11]. For synthetic spectra calculations, we applied the magnetic spectrum synthesis code SYNTHM [4], which is similar to the Piskunov code SYNTHMAG and was tested in accordance with [15]. For initial calculations, we also used the code STARSP of [14] and in some cases the code ZEEMAN2 [15]. We used the VALD [6] and DREAM1 databases for atomic spectral lines. These data do not in fact allow us to fit synthetic spectra to the observed ones for all stars investigated. Therefore, we calculated additional REE ii-iii lines using the NIST energy levels and estimated their “astrophysical” gf -values from the spectra of HD 101065 using the elements abundance from [2]. The theoretical gf -values for important (by the lithium abundance determination) blending lines were especially computed by P. Quinet with the Cowan’s code as well (see [13]). RESULTS Results of the research are presented in Table 2. In the second line, parameters of the model atmospheres used are given. In Table 2, we give for each star the abundance of Fe I and Fe II in the scale of log N(H) = 12.0, derived from a group of the Fe I (6102–6103 Å) and Fe II (6149 Å) lines (3rd, 4th lines in the table). The lithium abundances determined from both 6708 Å and 6103 Å lines and isotopic ratio derived from the 6708 Å line are shown in 5th–7th lines of the table. Under the solid line, we present the parameters of magnetic field and v sin i found from the fitting of the Fe II 6149 Å, Pr III 6706.7 Å, and Ca I 6102.7 Å lines. The last value of v sin i was used for spectra calculations in both lithium lines ranges. The magnetic field parameters from Ca I 6102.7 Å were used for the 6103 Å range and the ones from Pr III 6707.6 Å – for the 6708 Å range. CONCLUSIONS • Our research of two roAp stars, HD 83368 and HD 60435 [12], provides an evidence for the enhanced lithium abundance near the magnetic field poles. We can expect similar effects in sharp-lined roAp stars. The high lithium abundance for these stars and the estimates of 6Li/7Li ratio (0.4÷0.5) can be explained by the Galactic Cosmic Ray (GCR) production due to spallation reactions with ISM in star-forming regions and the preservation of the original 6Li and 7Li by strong magnetic fields of these stars. The values of 6Li/7Li ratio expected from the GCR production are about 0.5 ÷ 0.8 [5, 16]. • New laboratory and theoretical gf -values for the REE lines are necessary in order to refine our estimates of the lithium abundance and of the isotopic ratio. 1 [http://www.umh.ac.be/∼astro/dream.shtml] 297 Acknowledgements. The authors are grateful to Dr. P. North for the ESO spectra and Dr. J. Zverko for the remarks to the manuscript. [1] Bi’emont E., Palmeri P., Quinet P. D.R.E.A.M. Database on Rare Earths at Mons University // [http://www.umh.ac.be/∼astro/dream.shtml]. [2] Cowley C. R., Ryabchikova T., Kupka F., et al. Abundances in Przybylski’s star // Mon. Notic. Roy. Astron. Soc.–317, N 1.–P. 299–309. [3] Gelbman M., Ryabchikova T., Weiss W., et al. Abundance analysis of roAp stars. V. HD 166473 // Astron. and Astrophys.–2000.–356, N 1.–P. 200–208. [4] Khan S. The code of spectrum synthesis in atmospheres of Ap stars // J. Quant. Spectrosc. and Radiat. Transfer.– 2004.–88, N 1–3.–P. 71–81. [5] Knauth D. C., Federman S. R., Lambert D. L. An ultra-high-resolution survey of the interstellar 7Li/6Li isotope ratio in the solar neighborhood // Astrophys. J.–2003.–586, N 1.–P. 268–285. [6] Kupka F., Piskunov N. E., Ryabchikova T. A., et al. VALD-2: Progress of the Vienna Atomic Line Data Base // Astron. and Astrophys. Suppl. Ser.–1999.–138, N 1.–P. 119–133. [7] Kurucz R. Atomic and Molecular Lines Database–1994.–CDROM (1–23). [8] Polosukhina N., Kurtz D., Hack M., et al. Lithium on the surface of cool magnetic CP stars. I. Summary of spectroscopic observations with three telescopes // Astron. and Astrophys.–1999.–351, N 1.–P. 283–291. [9] Panchuk V. E., Klochkova V. G., Najdenov I. D. Nasmyth Echelle Spectrometer for BTA // Preprint of the Special Astrophys. Obs.–1999.–N 135. [10] Ryabchikova T. A., Landstreet J. D., Gelbmann M. J., et al. Abundance analysis of roAp stars. III. γ Equulei // Astron. and Astrophys.–1997.–322, N 1.–P. 234–241. [11] Ryabchikova T., Piskunov N., Savanov I., et al. EU III identification and EU abundance in CP stars // Astron. and Astrophys.–1999.–343, N 1.–P. 229–236. [12] Shavrina A. V., Polosukhina N. S., Zverko J., et al. Lithium on the surface of cool magnetic CP stars. II. Spectrum analysis of HD 83368 and HD 60435 with lithium spots // Astron. and Astrophys.–2001.–372, N 2.–P. 571–578. [13] Shavrina A. V., Polosukhina N. S., Pavlenko Ya. V., et al. The spectrum of the roAp star HD 101065 (Przybylski’s star) in the Li I 670.8 nm spectral region // Astron. and Astrophys.–2003.–409, N 2.–P. 707–717. [14] Tsymbal V. A Software System For the Analysis of the Spectra of Normal Stars // Odessa Astron. Publ.–1994.–7, N 1–P. 146. [15] Wade G. A., Bagnulo S., Kochukov O., et al. LTE spectrum synthesis in magnetic stellar atmospheres. The interagreement of three independent polarised radiative transfer codes // Astron. and Astrophys.–2001.-374, N 1.– P. 265–279. [16] Webber W. R., Lukasiak A., McDonald F. B. VOYAGER measurements of the charge and isotopic composition of cosmic ray Li, Be, and B nuclei and implications for their production in the Galaxy // Astrophys. J.–2002.–568, N 1.–P. 210–215. 298