Nanotube formation with controlled properties on catalytic surface by fullerene flow
It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotube...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79803 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nanotube formation with controlled properties on catalytic surface by fullerene flow / V.I. Maslov,G.A. Skorobagat’ko, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 197-198. — Бібліогр.: 1 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79803 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-798032015-04-05T03:02:40Z Nanotube formation with controlled properties on catalytic surface by fullerene flow Maslov, V.I. Skorobagat’ko, G.A. Yegorov, A.M. Onishchenko, I.N. Low temperature plasma and plasma technologies It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotubes are oriented in the ordered comb by an electric field. For this purpose the electric field should be more than determined value and it also should be less than other determined value. Показано, що бомбардування фулеренами нанотрубок, що ростуть, веде до того, що якщо кінетична енергія молекули фулерена перевищує малу частину енергії зв'язку всіх атомів вуглецю нанотрубки, то вона може зламатися. Для зручного використання нанотрубок вони орієнтуються в гребінку електричним полем. Для цього електричне поле повинно бути більше визначеного значення, але менше іншого значення. Показано, что бомбардировка растущих нанотрубок фуллеренами ведет к тому, что, если кинетическая энергия молекулы фуллерена превышает малую часть энергии связи всех атомов углерода нанотрубки, то она может сломаться. Для удобного использования нанотрубок они ориентируются в гребенку электрическим полем. Для этого электрическое поле должно быть больше определенного значения, но меньше другого значения. 2005 Article Nanotube formation with controlled properties on catalytic surface by fullerene flow / V.I. Maslov,G.A. Skorobagat’ko, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 197-198. — Бібліогр.: 1 назв. — англ. 1562-6016 PACS: 52.27.Lw http://dspace.nbuv.gov.ua/handle/123456789/79803 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Maslov, V.I. Skorobagat’ko, G.A. Yegorov, A.M. Onishchenko, I.N. Nanotube formation with controlled properties on catalytic surface by fullerene flow Вопросы атомной науки и техники |
description |
It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotubes are oriented in the ordered comb by an electric field. For this purpose the electric field should be more than determined value and it also should be less than other determined value. |
format |
Article |
author |
Maslov, V.I. Skorobagat’ko, G.A. Yegorov, A.M. Onishchenko, I.N. |
author_facet |
Maslov, V.I. Skorobagat’ko, G.A. Yegorov, A.M. Onishchenko, I.N. |
author_sort |
Maslov, V.I. |
title |
Nanotube formation with controlled properties on catalytic surface by fullerene flow |
title_short |
Nanotube formation with controlled properties on catalytic surface by fullerene flow |
title_full |
Nanotube formation with controlled properties on catalytic surface by fullerene flow |
title_fullStr |
Nanotube formation with controlled properties on catalytic surface by fullerene flow |
title_full_unstemmed |
Nanotube formation with controlled properties on catalytic surface by fullerene flow |
title_sort |
nanotube formation with controlled properties on catalytic surface by fullerene flow |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2005 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79803 |
citation_txt |
Nanotube formation with controlled properties on catalytic surface by fullerene flow / V.I. Maslov,G.A. Skorobagat’ko, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 197-198. — Бібліогр.: 1 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT maslovvi nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow AT skorobagatkoga nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow AT yegorovam nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow AT onishchenkoin nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow |
first_indexed |
2025-07-06T03:46:42Z |
last_indexed |
2025-07-06T03:46:42Z |
_version_ |
1836867757706051584 |
fulltext |
NANOTUBE FORMATION WITH CONTROLLED PROPERTIES ON
CATALYTIC SURFACE BY FULLERENE FLOW
V.I. Maslov, G.A. Skorobagat’ko*, A.M. Yegorov, I.N. Onishchenko
NSC Kharkov Institute of Physics & Technology, Kharkov, Ukraine,
E-mail: vmaslov@kipt.kharkov.ua
*V.N. Karazin Kharkov National University, Kharkov, 61108, Ukraine;
It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to
that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube
the nanotube can brake. For convenient further use the nanotubes are oriented in the ordered comb by an electric field.
For this purpose the electric field should be more than determined value and it also should be less than other determined
value.
PACS: 52.27.Lw
INTRODUCTION
It has been shown theoretically that the bombardment
of the growing nanotubes by fullerenes leads in typical
conditions to that on the catalytic surface the observed [1]
uncontrolled number of twisted nanotubes is formed.
Furthermore if the fullerene molecule kinetic energy
exceeds 1% of the binding energy of all carbon atoms of
the nanotube the nanotube can be braken, as it observed in
[1]. For convenient further use the nanotubes are oriented
in the ordered comb by an electric field. Thus not number
of twisted nanotubes but their oriented comb is formed.
For this purpose the electric field should be more than
determined value and it also should be less than other
determined value. It is determined by that this electric
field should not change strongly the kinetic energy of
fullerene molecules. These boundary values of the electric
field have been determined. At small energies of fullerene
molecules the single-wall nanotubes are formed. The
mechanism of nanotube filling by fullerene molecules at
molecule large energies has been considered. The role of
bombardment for the formation of ideal azimuthally
symmetrical nanotubes is considered.
CRITERION OF ONE-WALL NANOTUBE
BREAK AS A RESULT OF IMPACTS WITH
FULLERENES
Let's consider vertically directed nanotube on
catalytic surface which is bombarded by fullerenes. Such
nanotube tests constant impacts from the fullerenes and as
a result to be bent. Nanotube deformation is non-
uniformly distributed on its length, and in a point of a
break it is maximal. Critical deformation of the nanotube
at which it breaks, determined by critical value of
displacement of several atoms of its wall, forming cross-
section of the nanotube and, taking place in a place of its
break. Each such cross-section of the nanotube forms
approximately a ring consisting of 12 carbon atoms. At a
bend the everyone (i-th) ring turns concerning next on
some corner αi .
Let at fullerene impact with nanotube it is bent in a
vertical plane. Then there is some direction (an axis 0x) of
displacement from balance position for each atom. We
determine x j displacement of j-th atom in this direction.
Then the critical value of such displacement is:
xкрj=xкр .
Let Δε j is the energy of displacement of j-th atom
in a nanotube wall as a result of its bend. Then
Δε j∝ x
j2 (1)
where x j is the displacement of j-th atom in a nanotube
wall in some direction. We enter:
U ij=Δε j /ΔS i (2)
U ij is the energy of displacement of j-th atom of a tube
on unit of the area of displacement of i-th rings of the
nanotube. I.e. U ij is the energy density of an i-th ring
bend of the nanotube, belonging to unit area, passing by
this (i-th) ring at its bend concerning the next ring on the
corner αi . Here ΔS i is the area on a surface of the
tube, turning out as a result of displacement of i-th ring of
the nanotube. With the account εкр≈
Eсв
3
at x= xкр
we write down
U x =βx2 , β=
Eсв
3ΔSкр xкр
2 , (3)
where Eсв is the connection energy of one carbon atom
in a nanotube wall, ΔS кр is the size of the area of
displacement of i-th ring at which the nanotube breaks.
xкр=γrd , γ <1, r d is the inter-nuclear distance.
For ΔS i it is possible to write down:
ΔS i=4 ∫
0
αi
∫
0
π / 2
dϕ dαr f
2 sinϕ sin α . (4)
Then
ΔS кр=4r f
2 1 −cosαкр , sin αкр≈
xкр
r f
. (5)
Let's write down
Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 197-198 197
εki=∫
o
Si
dS i α ,ϕ U α ,ϕ =
=4r f
2∫
0
αi
dα∫
0
π /2
dϕ sinϕ sin αU α ,ϕ
. (6)
Here U α ,ϕ =βx2 ; x=r f sinϕ sin α . Then
εki=
8
3
r f
4 β 2
3
−cosαi 1 −
cos2αi
3
,
(7)
β=
Eсв
3ΔSi x кр
2 =
Eсв
12 r f
2 x кр
2 1 −cos αi
.
Full critical energy of a nanotube bend is equal:
ε∑ kр= ∑
i=1
N k−1
ε ki=
=
2 Eсв
27sin2 αкр
∑
i=1
N k−1 [2 −cosαi 3 −cos2 αi ]
1 −cosαi
.
(8)
Let's proceed from the sum on N k rings to integral
on
αi∈α0 ; αкр : dα=
αкр−α0
N k−1
ε∑ kр=
2 E св
27sin2 αкр
׿
¿×[∫α0
αкр [2 −cosα 3 −cos2 α ]
1 −cos α
dα]N k−1
α кр−α0
(9)
¿
Eсв N k−1
27
.
The dependence for εкр Σ can be presented through
connection energy Eсв Σ of all nanotube with the fixed
N k . Then for energy of a nanotube break of the fixed
length in dependence on its connection full energy in our
approximation the following estimation is correct:
кр∑¿≈
Eсв∑ ¿
162
ε¿
¿
. (10)
As a result we have derived the dependence of energy
of a critical nanotube bend concerning its bend on full
connection energy of carbon atoms in nanotube and on
quantityof fullerenes from which it was generated.
Let us write down a condition of a nanotube growth
without breaks in conditions of their bombardment by
fullerenes of environmental plasma. Namely, average
kinetic energy of fullerene, falling on nanotube from
environmental plasma, is equal K f =
m f
v f
2
2
, where
v f is the average fullerene velocity, m f is its mass.
Then for a nanotube formation without breaks the
performance of a condition of restriction from above
values K f is necessary:
K f ≤
ε c−c
18 Lnt
rd or K f ≤
ε f
108 Lnt
d f , (11)
or K f ≤
Eсв∑ ¿
162
¿
. Here ε f is the connection energy of
all carbon atoms in fullerene, εc−c is the energy of one
carbon - carbon connection, Lnt is the length of the
nanotube, d f is the diameter of fullerene.
NANOTUBE STRAIGHTENING IN THE
ELECTRIC FIELD
For that the external electric field E0 orders
nanotubes and insignificantly changed kinetic energy of
falling fullerenes it should satisfy
2m f v f
2
eN f Lnt sin2 αкр
E0
m f v
f 2
eh
,
αкр is the allowable corner of a nanotube deviation; h is
the distance, passed by fullerene in the electric field.
REFERENCES
1. G.-H.Jeong, R.Hatakeyama, T.Hirata et al. // Proc.
XXV ICPIG. Nagoya, 2001, v.2, p.155.
ФОРМИРОВАНИЕ НАНОТРУБОК С КОНТРОЛИРУЕМЫМИ СВОЙСТВАМИ
НА КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТИ ПОТОКОМ ФУЛЛЕРЕНОВ
В.И. Маслов, Г.А. Скоробагатько, А.М. Егоров, И.Н. Онищенко
Показано, что бомбардировка растущих нанотрубок фуллеренами ведет к тому, что, если кинетическая
энергия молекулы фуллерена превышает малую часть энергии связи всех атомов углерода нанотрубки, то она
может сломаться. Для удобного использования нанотрубок они ориентируются в гребенку электрическим
полем. Для этого электрическое поле должно быть больше определенного значения, но меньше другого
значения.
ФОРМУВАННЯ НАНОТРУБОК ІЗ КОНТРОЛЬОВАНИМИ ВЛАСТИВОСТЯМИ
НА КАТАЛІТИЧНІЙ ПОВЕРХНІ ПОТОКОМ ФУЛЕРЕНІВ
В.І. Маслов, Г.О. Скоробагатько, О.М. Єгоров, І.М. Онищенко
Показано, що бомбардування фулеренами нанотрубок, що ростуть, веде до того, що якщо кінетична енергія
молекули фулерена перевищує малу частину енергії зв'язку всіх атомів вуглецю нанотрубки, то вона може
зламатися. Для зручного використання нанотрубок вони орієнтуються в гребінку електричним полем. Для цього
електричне поле повинно бути більше визначеного значення, але менше іншого значення.
|