Nanotube formation with controlled properties on catalytic surface by fullerene flow

It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotube...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Maslov, V.I., Skorobagat’ko, G.A., Yegorov, A.M., Onishchenko, I.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79803
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nanotube formation with controlled properties on catalytic surface by fullerene flow / V.I. Maslov,G.A. Skorobagat’ko, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 197-198. — Бібліогр.: 1 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79803
record_format dspace
spelling irk-123456789-798032015-04-05T03:02:40Z Nanotube formation with controlled properties on catalytic surface by fullerene flow Maslov, V.I. Skorobagat’ko, G.A. Yegorov, A.M. Onishchenko, I.N. Low temperature plasma and plasma technologies It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotubes are oriented in the ordered comb by an electric field. For this purpose the electric field should be more than determined value and it also should be less than other determined value. Показано, що бомбардування фулеренами нанотрубок, що ростуть, веде до того, що якщо кінетична енергія молекули фулерена перевищує малу частину енергії зв'язку всіх атомів вуглецю нанотрубки, то вона може зламатися. Для зручного використання нанотрубок вони орієнтуються в гребінку електричним полем. Для цього електричне поле повинно бути більше визначеного значення, але менше іншого значення. Показано, что бомбардировка растущих нанотрубок фуллеренами ведет к тому, что, если кинетическая энергия молекулы фуллерена превышает малую часть энергии связи всех атомов углерода нанотрубки, то она может сломаться. Для удобного использования нанотрубок они ориентируются в гребенку электрическим полем. Для этого электрическое поле должно быть больше определенного значения, но меньше другого значения. 2005 Article Nanotube formation with controlled properties on catalytic surface by fullerene flow / V.I. Maslov,G.A. Skorobagat’ko, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 197-198. — Бібліогр.: 1 назв. — англ. 1562-6016 PACS: 52.27.Lw http://dspace.nbuv.gov.ua/handle/123456789/79803 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
spellingShingle Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
Maslov, V.I.
Skorobagat’ko, G.A.
Yegorov, A.M.
Onishchenko, I.N.
Nanotube formation with controlled properties on catalytic surface by fullerene flow
Вопросы атомной науки и техники
description It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotubes are oriented in the ordered comb by an electric field. For this purpose the electric field should be more than determined value and it also should be less than other determined value.
format Article
author Maslov, V.I.
Skorobagat’ko, G.A.
Yegorov, A.M.
Onishchenko, I.N.
author_facet Maslov, V.I.
Skorobagat’ko, G.A.
Yegorov, A.M.
Onishchenko, I.N.
author_sort Maslov, V.I.
title Nanotube formation with controlled properties on catalytic surface by fullerene flow
title_short Nanotube formation with controlled properties on catalytic surface by fullerene flow
title_full Nanotube formation with controlled properties on catalytic surface by fullerene flow
title_fullStr Nanotube formation with controlled properties on catalytic surface by fullerene flow
title_full_unstemmed Nanotube formation with controlled properties on catalytic surface by fullerene flow
title_sort nanotube formation with controlled properties on catalytic surface by fullerene flow
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Low temperature plasma and plasma technologies
url http://dspace.nbuv.gov.ua/handle/123456789/79803
citation_txt Nanotube formation with controlled properties on catalytic surface by fullerene flow / V.I. Maslov,G.A. Skorobagat’ko, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 197-198. — Бібліогр.: 1 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow
AT skorobagatkoga nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow
AT yegorovam nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow
AT onishchenkoin nanotubeformationwithcontrolledpropertiesoncatalyticsurfacebyfullereneflow
first_indexed 2025-07-06T03:46:42Z
last_indexed 2025-07-06T03:46:42Z
_version_ 1836867757706051584
fulltext NANOTUBE FORMATION WITH CONTROLLED PROPERTIES ON CATALYTIC SURFACE BY FULLERENE FLOW V.I. Maslov, G.A. Skorobagat’ko*, A.M. Yegorov, I.N. Onishchenko NSC Kharkov Institute of Physics & Technology, Kharkov, Ukraine, E-mail: vmaslov@kipt.kharkov.ua *V.N. Karazin Kharkov National University, Kharkov, 61108, Ukraine; It has been shown that the bombardment of the nanotubes, growing on the catalytic surface, by fullerenes leads to that if the fullerene molecule kinetic energy exceeds small part of the binding energy of all carbon atoms of the nanotube the nanotube can brake. For convenient further use the nanotubes are oriented in the ordered comb by an electric field. For this purpose the electric field should be more than determined value and it also should be less than other determined value. PACS: 52.27.Lw INTRODUCTION It has been shown theoretically that the bombardment of the growing nanotubes by fullerenes leads in typical conditions to that on the catalytic surface the observed [1] uncontrolled number of twisted nanotubes is formed. Furthermore if the fullerene molecule kinetic energy exceeds 1% of the binding energy of all carbon atoms of the nanotube the nanotube can be braken, as it observed in [1]. For convenient further use the nanotubes are oriented in the ordered comb by an electric field. Thus not number of twisted nanotubes but their oriented comb is formed. For this purpose the electric field should be more than determined value and it also should be less than other determined value. It is determined by that this electric field should not change strongly the kinetic energy of fullerene molecules. These boundary values of the electric field have been determined. At small energies of fullerene molecules the single-wall nanotubes are formed. The mechanism of nanotube filling by fullerene molecules at molecule large energies has been considered. The role of bombardment for the formation of ideal azimuthally symmetrical nanotubes is considered. CRITERION OF ONE-WALL NANOTUBE BREAK AS A RESULT OF IMPACTS WITH FULLERENES Let's consider vertically directed nanotube on catalytic surface which is bombarded by fullerenes. Such nanotube tests constant impacts from the fullerenes and as a result to be bent. Nanotube deformation is non- uniformly distributed on its length, and in a point of a break it is maximal. Critical deformation of the nanotube at which it breaks, determined by critical value of displacement of several atoms of its wall, forming cross- section of the nanotube and, taking place in a place of its break. Each such cross-section of the nanotube forms approximately a ring consisting of 12 carbon atoms. At a bend the everyone (i-th) ring turns concerning next on some corner αi . Let at fullerene impact with nanotube it is bent in a vertical plane. Then there is some direction (an axis 0x) of displacement from balance position for each atom. We determine x j displacement of j-th atom in this direction. Then the critical value of such displacement is: xкрj=xкр . Let Δε j is the energy of displacement of j-th atom in a nanotube wall as a result of its bend. Then Δε j∝ x j2 (1) where x j is the displacement of j-th atom in a nanotube wall in some direction. We enter: U ij=Δε j /ΔS i (2) U ij is the energy of displacement of j-th atom of a tube on unit of the area of displacement of i-th rings of the nanotube. I.e. U ij is the energy density of an i-th ring bend of the nanotube, belonging to unit area, passing by this (i-th) ring at its bend concerning the next ring on the corner αi . Here ΔS i is the area on a surface of the tube, turning out as a result of displacement of i-th ring of the nanotube. With the account εкр≈ Eсв 3 at x= xкр we write down U  x =βx2 , β= Eсв 3ΔSкр xкр 2 , (3) where Eсв is the connection energy of one carbon atom in a nanotube wall, ΔS кр is the size of the area of displacement of i-th ring at which the nanotube breaks. xкр=γrd , γ <1, r d is the inter-nuclear distance. For ΔS i it is possible to write down: ΔS i=4 ∫ 0 αi ∫ 0 π / 2 dϕ dαr f 2 sinϕ sin α . (4) Then ΔS кр=4r f 2 1 −cosαкр  , sin αкр≈ xкр r f . (5) Let's write down Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 197-198 197 εki=∫ o Si dS i α ,ϕ U α ,ϕ = =4r f 2∫ 0 αi dα∫ 0 π /2 dϕ sinϕ sin αU α ,ϕ  . (6) Here U α ,ϕ =βx2 ; x=r f sinϕ sin α . Then εki= 8 3 r f 4 β  2 3 −cosαi 1 − cos2αi 3  , (7) β= Eсв 3ΔSi x кр 2 = Eсв 12 r f 2 x кр 2 1 −cos αi . Full critical energy of a nanotube bend is equal: ε∑ kр= ∑ i=1 N k−1 ε ki= = 2 Eсв 27sin2 αкр ∑ i=1 N k−1 [2 −cosαi 3 −cos2 αi ] 1 −cosαi . (8) Let's proceed from the sum on N k rings to integral on αi∈α0 ; αкр : dα= αкр−α0 N k−1  ε∑ kр= 2 E св 27sin2 αкр ׿ ¿×[∫α0 αкр [2 −cosα 3 −cos2 α ] 1 −cos α  dα]N k−1 α кр−α0 (9) ¿ Eсв N k−1  27 . The dependence for εкр Σ can be presented through connection energy Eсв Σ of all nanotube with the fixed N k . Then for energy of a nanotube break of the fixed length in dependence on its connection full energy in our approximation the following estimation is correct: кр∑¿≈ Eсв∑ ¿ 162 ε¿ ¿ . (10) As a result we have derived the dependence of energy of a critical nanotube bend concerning its bend on full connection energy of carbon atoms in nanotube and on quantityof fullerenes from which it was generated. Let us write down a condition of a nanotube growth without breaks in conditions of their bombardment by fullerenes of environmental plasma. Namely, average kinetic energy of fullerene, falling on nanotube from environmental plasma, is equal K f = m f v f 2 2 , where v f is the average fullerene velocity, m f is its mass. Then for a nanotube formation without breaks the performance of a condition of restriction from above values K f is necessary: K f ≤ ε c−c 18  Lnt rd  or K f ≤ ε f 108  Lnt d f  , (11) or K f ≤ Eсв∑ ¿ 162 ¿ . Here ε f is the connection energy of all carbon atoms in fullerene, εc−c is the energy of one carbon - carbon connection, Lnt is the length of the nanotube, d f is the diameter of fullerene. NANOTUBE STRAIGHTENING IN THE ELECTRIC FIELD For that the external electric field E0 orders nanotubes and insignificantly changed kinetic energy of falling fullerenes it should satisfy 2m f v f 2 eN f Lnt sin2 αкр E0 m f v f 2 eh , αкр is the allowable corner of a nanotube deviation; h is the distance, passed by fullerene in the electric field. REFERENCES 1. G.-H.Jeong, R.Hatakeyama, T.Hirata et al. // Proc. XXV ICPIG. Nagoya, 2001, v.2, p.155. ФОРМИРОВАНИЕ НАНОТРУБОК С КОНТРОЛИРУЕМЫМИ СВОЙСТВАМИ НА КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТИ ПОТОКОМ ФУЛЛЕРЕНОВ В.И. Маслов, Г.А. Скоробагатько, А.М. Егоров, И.Н. Онищенко Показано, что бомбардировка растущих нанотрубок фуллеренами ведет к тому, что, если кинетическая энергия молекулы фуллерена превышает малую часть энергии связи всех атомов углерода нанотрубки, то она может сломаться. Для удобного использования нанотрубок они ориентируются в гребенку электрическим полем. Для этого электрическое поле должно быть больше определенного значения, но меньше другого значения. ФОРМУВАННЯ НАНОТРУБОК ІЗ КОНТРОЛЬОВАНИМИ ВЛАСТИВОСТЯМИ НА КАТАЛІТИЧНІЙ ПОВЕРХНІ ПОТОКОМ ФУЛЕРЕНІВ В.І. Маслов, Г.О. Скоробагатько, О.М. Єгоров, І.М. Онищенко Показано, що бомбардування фулеренами нанотрубок, що ростуть, веде до того, що якщо кінетична енергія молекули фулерена перевищує малу частину енергії зв'язку всіх атомів вуглецю нанотрубки, то вона може зламатися. Для зручного використання нанотрубок вони орієнтуються в гребінку електричним полем. Для цього електричне поле повинно бути більше визначеного значення, але менше іншого значення.