Features of high-current pulsed regimes in regimes in magnetron sputtering systems

The high-current pulsed magnetron sputtering system is presented and its operation regimes are studied. The comparative technological trials of the system are carried out at various types of the discharge: stationary magnetron, pulsed magnetron and pulsed arc. A procedure of calculation of dynamics...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Bizyukov, A.A., Kashaba, A.Ye., Romashchenko, E.V., Sereda, K.N., Tarasov, I.K., Abolmasov, S.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79809
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Features of high-current pulsed regimes in regimes in magnetron sputtering systems / A.A. Bizyukov, A.Ye. Kashaba, E.V. Romashchenko, K.N. Sereda, I.K. Tarasov, S.N. Abolmasov // Вопросы атомной науки и техники. — 2005. — № 2. — С. 167-169. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79809
record_format dspace
spelling irk-123456789-798092015-04-05T03:02:13Z Features of high-current pulsed regimes in regimes in magnetron sputtering systems Bizyukov, A.A. Kashaba, A.Ye. Romashchenko, E.V. Sereda, K.N. Tarasov, I.K. Abolmasov, S.N. Low temperature plasma and plasma technologies The high-current pulsed magnetron sputtering system is presented and its operation regimes are studied. The comparative technological trials of the system are carried out at various types of the discharge: stationary magnetron, pulsed magnetron and pulsed arc. A procedure of calculation of dynamics and distribution of temperature in a near surface layer of the target material at heat application to a surface in conditions of low pressures of working gases is described. Описана сильнострумова імпульсна магнетронна розпилювальна система та вивчені режими її роботи. Проведені порівняльні технологічні випробування системи при різних типах розряду: стаціонарному магнетронному, імпульсному магнетронному та імпульсному дуговому. Приведена методика розрахунку динаміки і розподілу температури в приповерхневому шарі матеріалу мішені при підводі тепла до поверхні в умовах низьких тисків робочих газів. Представлена сильноточная импульсная магнетронная распылительная система и изучены режимы ее работы. Проведены сравнительные технологические испытания системы при различных типах разряда: стационарном магнетронном, импульсном магнетронном и импульсном дуговом. Приведена методика вычисления динамики и распределения температуры в приповерхностном слое материала мишени при подводе тепла к поверхности в условиях низких давлений рабочих газов. 2005 Article Features of high-current pulsed regimes in regimes in magnetron sputtering systems / A.A. Bizyukov, A.Ye. Kashaba, E.V. Romashchenko, K.N. Sereda, I.K. Tarasov, S.N. Abolmasov // Вопросы атомной науки и техники. — 2005. — № 2. — С. 167-169. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.40.Hf http://dspace.nbuv.gov.ua/handle/123456789/79809 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
spellingShingle Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
Bizyukov, A.A.
Kashaba, A.Ye.
Romashchenko, E.V.
Sereda, K.N.
Tarasov, I.K.
Abolmasov, S.N.
Features of high-current pulsed regimes in regimes in magnetron sputtering systems
Вопросы атомной науки и техники
description The high-current pulsed magnetron sputtering system is presented and its operation regimes are studied. The comparative technological trials of the system are carried out at various types of the discharge: stationary magnetron, pulsed magnetron and pulsed arc. A procedure of calculation of dynamics and distribution of temperature in a near surface layer of the target material at heat application to a surface in conditions of low pressures of working gases is described.
format Article
author Bizyukov, A.A.
Kashaba, A.Ye.
Romashchenko, E.V.
Sereda, K.N.
Tarasov, I.K.
Abolmasov, S.N.
author_facet Bizyukov, A.A.
Kashaba, A.Ye.
Romashchenko, E.V.
Sereda, K.N.
Tarasov, I.K.
Abolmasov, S.N.
author_sort Bizyukov, A.A.
title Features of high-current pulsed regimes in regimes in magnetron sputtering systems
title_short Features of high-current pulsed regimes in regimes in magnetron sputtering systems
title_full Features of high-current pulsed regimes in regimes in magnetron sputtering systems
title_fullStr Features of high-current pulsed regimes in regimes in magnetron sputtering systems
title_full_unstemmed Features of high-current pulsed regimes in regimes in magnetron sputtering systems
title_sort features of high-current pulsed regimes in regimes in magnetron sputtering systems
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Low temperature plasma and plasma technologies
url http://dspace.nbuv.gov.ua/handle/123456789/79809
citation_txt Features of high-current pulsed regimes in regimes in magnetron sputtering systems / A.A. Bizyukov, A.Ye. Kashaba, E.V. Romashchenko, K.N. Sereda, I.K. Tarasov, S.N. Abolmasov // Вопросы атомной науки и техники. — 2005. — № 2. — С. 167-169. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bizyukovaa featuresofhighcurrentpulsedregimesinregimesinmagnetronsputteringsystems
AT kashabaaye featuresofhighcurrentpulsedregimesinregimesinmagnetronsputteringsystems
AT romashchenkoev featuresofhighcurrentpulsedregimesinregimesinmagnetronsputteringsystems
AT seredakn featuresofhighcurrentpulsedregimesinregimesinmagnetronsputteringsystems
AT tarasovik featuresofhighcurrentpulsedregimesinregimesinmagnetronsputteringsystems
AT abolmasovsn featuresofhighcurrentpulsedregimesinregimesinmagnetronsputteringsystems
first_indexed 2025-07-06T03:46:56Z
last_indexed 2025-07-06T03:46:56Z
_version_ 1836867772453224448
fulltext FEATURES OF HIGH-CURRENT PULSED REGIMES IN MAGNETRON SPUTTERING SYSTEMS A.A. Bizyukov, A.Ye. Kashaba, E.V. Romashchenko*, K.N. Sereda, I.K. Tarasov**, S.N. Abolmasov*** V.N. Karazin Kharkov National University, Kharkov, Ukraine; * East-Ukrainian National University, Lugansk, Ukraine; ** NSC Kharkov Institute of Physics and Technologies, Kharkov, Ukraine; *** Kyoto University, Japan The high-current pulsed magnetron sputtering system is presented and its operation regimes are studied. The comparative technological trials of the system are carried out at various types of the discharge: stationary magnetron, pulsed magnetron and pulsed arc. A procedure of calculation of dynamics and distribution of temperature in a near surface layer of the target material at heat application to a surface in conditions of low pressures of working gases is described. PACS: 52.40.Hf 1. INTRODUCTION The investigation of the pulsed magnetron sputtering system (MSS) in modes with large discharge currents is stimulated by an opportunity to decrease energy expenses on the process of ion sputtering at large densities of ion current to the target when transition of ion-nuclear inter­ action into a mode of "thermal peaks" occurs [1-4]. The realization of these opportunities of pulsed conditions of the MSS is especially attractive at use of conventional discharge systems and power units for a dc MSS. At the same time, the modes of operations of the MSS with large densities of ion current to the sputtered target are accom­ panied by processes of intensive heating of a target sur­ face that can lead to transition into the mode of "thermal peaks", and to thermal explosion of microroughnesses of the surface or even to melting of a target material. In the presented work the high-current pulsed MSS is submitted and the modes its operation are studied. The comparative technological trials of the system are carried out at various types of the discharge: stationary mag­ netron, pulsed magnetron and pulsed arc. In the presented work a procedure of calculation of dynamics and distribu­ tion of temperature in a near surface layer of the material also is given at heat application to a surface in conditions of low pressures of working gases. 2. MATERIALS AND METHODS The experiments on study of pulsed conditions of the MSS were carried out on conventional planar magnetron with a target diameter of 150 mm (copper). Intensity of a magnetic field on a surface of a target was about H=250 Oe . The anode of the magnetron was grounded and the negative voltage from a conventional magnetron power unit was applied to the target: a dis­ charge voltage up to 1000 V , discharge current up to 5 А in a range of pressures of p=1 ÷8 ⋅10−3 Тorr (working gas - argon). At investigation of pulsed conditions of the MSS be­ tween a power unit and magnetron the store of energy (pulsed capacitor with a capacity of 10÷100 μF ) and thyristor circuit changer-transformer was included. The circuit changer-transformer provided delivery of negative impulses of a voltage U=1 ÷3 kV to the target with duration of 50÷200 μs and frequency of 50 Hz and adjustment of a discharge current in a range of 20÷5000 А . 3. RESULTS OF EXPERIMENTS AND DISCUSSION The pulsed magnetron discharge, in contrast to sta­ tionary, stably develops at much lower pressures of work­ ing gas. The limiting pressure of the discharge ignition in stationary conditions was 2 ⋅10−3 Torr , in pulsed - 3 ⋅10−4 Torr . The current-voltage characteristics and the discharge parameters are typical for the magnetron discharge. In this mode of operation of the MSS, in spite of the facts that the current of the discharge exceeds aver­ age current of a cathode spot for a copper electrode (75 А) and the duration of existence of the discharge is sufficient for occurrence of a cathode spot, the transition into an arc mode does not occur. When the discharge current exceeds some critical value in a range of 80÷120 А , we can observe formation of cathode spots on the target surface. The apparent phenomena, probably, are related to a break­ down of an external magnetic field of the magnetron by own magnetic field of a drift (Hall) electron current. In the Fig.1, the schematic figure of analytical model of cir­ cular planar magnetron is given. Owing to axial symmetry the zx-plane with radius of the magnetron loop of 5 cm is considered only. In Fig.2, the results of numerical modelling of super­ position of own external magnetic field of the planar mag­ netron with value on the target surface of В=200 Oe and magnetic field created by a Hall current with a value of I d=80 А is shown. The field inside the section of a conductor was calcu­ lated from the theory about circulation of magnetic inten­ sity, and outside of section of a conductor by means of vector potential (elliptic integrals of 1-st and 2-nd sort). One can see that at large currents the configuration of Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 167-169 167 magnetic field loses confining properties and the dis­ charge transfers from the discharge with cross magnetic field into the discharge with longitudinal magnetic field. Fig.1. Schematic of analytical model of circular planar magnetron HFig.2. Change of topography of magnetic surfaces of the MSS in the region of magnetic trap The technological trials have shown that the deposition rate of coatings depends on the discharge type in the MSS and this dependence in pulsed conditions is stronger than in stationary ones. At average power of 3 kW and peak pulsed currents for each type of the discharge the deposi­ tion rate of a copper in the pulsed magnetron discharge was incremented in 1 . 2 ÷1 . 3 times, in pulsed arc - in 3 ÷3 .5 times. The mechanical and adhesive char­ acteristics of coatings were also improved. Increase of velocity of mass transfer at pulsed high- current operation mode of the MSS probably is connected with transition of an ion sputtering into a mode of "ther­ mal peaks" when the discharge current reaches values typical for an electric arc, but the transition into an elec­ tric arc and occurrence of cathode spots does not occur. At pulsed conditions of operation of the MSS heating of a surface layer of a material of a sputtered target occurs. During period between impulses the processes of cooling occurs. For evaluation of dynamics of distribution of temperature in a near surface layer, we shall take the equation of a thermal conduction: ∂T ∂ t =a 2 ∂ 2 T ∂ x2 , where a2=k /cρ is the thermal diffusivity of the target material, T is the temperature in a selected point of the material, с is the specific heat capacity, ρ is the density of the target material, k is the thermal conductivity. The boundary and initial conditions for the equation of a thermal conduction for alternating periods of heating and cooling of the surface have a various looks. Therefore for the analytical solution of the problem on distribution of temperature in a near surface layer of the target it is necessary to divide the problem on two parts. One part describes the process of heating of the surface during one impulse, and second part describes the process of cooling of the surface between impulses: 1) ∂T 1 ∂ t =a2 ∂ 2 T 1 ∂ x2 , k ∂T 1 L ,t  ∂ x =−q t  , k ∂T 1 0, t  ∂ x =0 , T 1  x ,0 =T 0 , where q  t =4Q  t / τ−t 2 /τ 2 is the parabolic shape pulse, τ is the pulse duration, L is the thickness of near surface layer. 2) ∂T 2 ∂ t =a2 ∂ 2 T 2 ∂ x2 , ∂T 2 L , t  ∂ x =hT  L ,t  , T 2 0, t =0 with initial conditions corresponding T 1  x , τ  . Using cosine-transformation Fourier it is possible to obtaine the following solution describing spatial-temporal distribution of temperature in near surface layer of target with thickness L during her heating: T 1  x , t =4 Qa2 kL τ {− t3 3τ  t2 2 2 ∑ n=1 ∞ −1 n cos π nx L ⋅¿ ¿⋅[ exp−a2π 2 n2 t L2 −2L6 τa6 π6 n6  L4 a4π 4 n4  L2 2L4−2a2 π2 n2 L2 ta4 π4 n4 t2 τa6 π6 n6   L2 −L2a2π 2 n2 t2  a4 π4 n4 ]}T 0 . At the time of t=τ we shall obtain expression for spa­ tial distribution of temperature in the layer after heating: T 1  x , τ =4 Qa2 kL τ {τ 2 6 2 ∑ n=1 ∞ −1 n An cos π nx L }T 0 , where An=exp−a2 π 2n2τ L2 −2L6 τa6 π6 n6  L4 a 4π 4 n4   L2 2L4−2a2π 2 n2 L2 τa4 π 4n4 τ2 τa6π6 n6  L2 −L2a2π 2 n2 τ2 a4 π4 n4 168 Using a method of partitioning variable Fourier it is possi­ ble to obtain the following solution for the problem which describes cooling of the surface between impulses T 2  x , t =2 L2 {∑m=1 ∞ [ 2 Qa2 τ 3k L1 −cos λm λm   T 0 L 1 −cos λm λm  8 Qa2 kτ ∑ n=1 ∞ −1 n An⋅ ¿∫ 0 L cosπ nx L sin λm dx ]⋅sin λm xexp−a2 λm 2 t L2 }. The natural numbers λm are obtained by graphical cal­ culation from the trigonometric equation λ=htg λL . 0 0.0002 0.0004 0 0.005 0.01 0.015 0.02 0 2 4 6 0 0.0002 0.0004 0 2 4 6 Fig.3. Spatial - temporal distribution of temperature in a copper target of magnetron sputter system In Fig.3 the spatial-temporal distribution of tempera­ ture in the near surface layer of the target with thickness of L=0 . 5 mm is shown at a pulsed heating (the pulse duration is τ=100 μs , the density of applied power is Q=6 ⋅106 W /m2 ) and subsequent cooling of the target during the time period of 0.02 s correspond­ ing to repetition rate of impulses 50 Hz. The average temperature of a surface and volume grows linearly with time, however the pulsed temperature of a surface can essentially exceed the temperature of vol­ ume. In the gaps between impulses partial cooling of the surface due to heat exchange to environmental gas and propagation of a thermal wave deep into the target occurs. The calculations show that at the pulsed high-current magnetron discharge the temperature of the copper target surface grows in 2-3 times, but does not reach the value of melting temperature that proves by experimental data. At the same time, essential increase of the discharge cur­ rent and deposition rates of coating in this mode testify to growth of velocity of mass transfer as a result of transi­ tion from an ion - atom sputtering of the target to a mode of "thermal peaks". 4. CONCLUSIONS Thus, the transition from stationary to pulsed opera­ tion of a conventional magnetron sputtering system (MSS) has allowed to obtain universal technological sys­ tem (stationary magnetron - pulsed high-current mag­ netron with enhanced deposition rate - arc evaporator) with increased density of pulsed reactionary plasma. It is theoretically shown that the transition to an arc mode oc­ curs as a result of deformation of configuration of mag­ netic trap and loss of confining properties of the trap when the discharge current exceeds the critical value. The scheme of calculation of temperature distribution in the sputtered target at pulsed thermal action on a surface is proposed that significally simplifies a choice of optimum parameters for various vacuum-plasma surface process­ ing. REFERENCES 1. B.S. Danilin. Application of low-temperature plasma for deposition of thin films. M.: “Energoatomizdat”, 1989, p. 328. 2. V.P. Belevsky, A.I. Kuzmichov, et al. Pulsing ion treatment and deposition of thin films and coats. К.: Society “Znaniye” of Ukraine, 1991, p. 23. 3. A.I. Kuzmichov. Modulators for pulsing feed of mag­ netron sputtering systems // Proc. 7th International Symposium “Thin films in electronics”, Ioshkar-Ola. 1996, p.237 - 240. 4. P. Berish. Sputtering of solid bodies by ion bombard­ ment. M.: "Mir", 1984, p. 336. ОСОБЕННОСТИ СИЛЬНОТОЧНЫХ ИМПУЛЬСНЫХ РЕЖИМОВ В МАГНЕТРОННЫХ РАСПЫЛИТЕЛЬНЫХ СИСТЕМАХ А.А. Бизюков, А.Е. Кашаба, Е.В. Ромащенко, К.Н. Середа, И.К. Тарасов, С.Н. Аболмасов Представлена сильноточная импульсная магнетронная распылительная система и изучены режимы ее работы. Проведены сравнительные технологические испытания системы при различных типах разряда: стационарном магнетронном, импульсном магнетронном и импульсном дуговом. Приведена методика вычисления динамики и распределения температуры в приповерхностном слое материала мишени при подводе тепла к поверхности в условиях низких давлений рабочих газов. ОСОБЛИВОСТІ ПОТУЖНОСТРУМОВИХ ІМПУЛЬСНИХ РЕЖИМІВ У МАГНЕТРОННИХ РОЗПИ­ ЛЮВАЛЬНИХ СИСТЕМАХ О.А. Бізюков, А.Є. Кашаба, О.В. Ромащенко, К.М. Середа, І.К. Тарасов, С.М. Аболмасов 169 x, m t, s T, a.u. Описана сильнострумова імпульсна магнетронна розпилювальна система та вивчені режими її роботи. Проведені порівняльні технологічні випробування системи при різних типах розряду: стаціонарному магнетронному, імпульсному магнетронному та імпульсному дуговому. Приведена методика розрахунку ди­ наміки і розподілу температури в приповерхневому шарі матеріалу мішені при підводі тепла до поверхні в умовах низьких тисків робочих газів. 170