Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code

A 2D axially symmetrical hybrid PIC code is developed to study transformation of the laser energy into x-rays in plasma. A quasistatic approximation (the plasma wake is assumed to be slowly changed in a laser pulse frame) is used to accelerate computation. A comparison with simulation results obta...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Kostyukov, I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79877
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code / I. Kostyukov // Вопросы атомной науки и техники. — 2006. — № 3. — С. 154-156. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79877
record_format dspace
spelling irk-123456789-798772015-04-07T03:02:08Z Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code Kostyukov, I. Применение ускорителей в радиационных технологиях A 2D axially symmetrical hybrid PIC code is developed to study transformation of the laser energy into x-rays in plasma. A quasistatic approximation (the plasma wake is assumed to be slowly changed in a laser pulse frame) is used to accelerate computation. A comparison with simulation results obtained with a fully 3D electromagnetic PIC code is performed Для моделирования трансформации лазерного излучения разработан двухмерный аксиально-симметричный гибридный численный код, использующий метод частиц в ячейках. В качестве упрощающего предположения использовалось "квазистатическое" приближение (плазменная волна медленно меняется в системе отсчета, связанной с лазерным импульсом). Проведено сравнение с результатами моделирования с помощью полностью трехмерного, электромагнитного кода, использующего метод частиц в ячейках. Для моделювання трансформації лазерного випромінювання розроблено двомірний аксіально- симетричний гібридний чисельний код, що використовує метод часток в осередках. Як припущення, що спрощує, використано "квазістатичне" наближення (плазмова хвиля повільно міняється в системі відліку, пов'язаної з лазерним імпульсом). Проведено порівняння з результатами моделювання за допомогою повністю тривимірного, електромагнітного коду, що використає метод часток в осередках. 2006 Article Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code / I. Kostyukov // Вопросы атомной науки и техники. — 2006. — № 3. — С. 154-156. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 41.60.Ap, 52.40.Mj http://dspace.nbuv.gov.ua/handle/123456789/79877 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Kostyukov, I.
Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
Вопросы атомной науки и техники
description A 2D axially symmetrical hybrid PIC code is developed to study transformation of the laser energy into x-rays in plasma. A quasistatic approximation (the plasma wake is assumed to be slowly changed in a laser pulse frame) is used to accelerate computation. A comparison with simulation results obtained with a fully 3D electromagnetic PIC code is performed
format Article
author Kostyukov, I.
author_facet Kostyukov, I.
author_sort Kostyukov, I.
title Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
title_short Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
title_full Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
title_fullStr Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
title_full_unstemmed Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
title_sort simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Применение ускорителей в радиационных технологиях
url http://dspace.nbuv.gov.ua/handle/123456789/79877
citation_txt Simulation of laser-plasma synchrotron radiation source by a relativistic hybrid code / I. Kostyukov // Вопросы атомной науки и техники. — 2006. — № 3. — С. 154-156. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kostyukovi simulationoflaserplasmasynchrotronradiationsourcebyarelativistichybridcode
first_indexed 2025-07-06T03:49:46Z
last_indexed 2025-07-06T03:49:46Z
_version_ 1836867950392377344
fulltext SIMULATION OF LASER-PLASMA SYNCHROTRON RADIATION SOURCE BY A RELATIVISTIC HYBRID CODE I. Kostyukov Institute of Applied Physics RAS, Nizhny Novgorod, 603950, Russia E-mail: kost@appl.sci-nnov.ru A 2D axially symmetrical hybrid PIC code is developed to study transformation of the laser energy into x-rays in plasma. A quasistatic approximation (the plasma wake is assumed to be slowly changed in a laser pulse frame) is used to accelerate computation. A comparison with simulation results obtained with a fully 3D electromagnetic PIC code is performed. PACS: 41.60.Ap, 52.40.Mj The generation and application of high-brightness X-rays is a fast developing area of science and technolo- gy [1]. Diverse demands of multidisciplinary research (fast process probing, biology object imaging, investiga- tion of chemical reactions, etc.), as well as industrial and medical applications, drive the quest for intense and compact x-ray sources. Contemporary synchrotrons equipped with wiggler magnets are the most intense X-ray sources available now. High cost and large-scale significantly suppress the wide use of those sources. It has been recently predicted that part of the cold plasma electrons can be trapped by plasma wake and ac- celerated up to very high energy [2, 3]. Later this mech- anism, called Bubble acceleration, has been observed experimentally [4]. In Bubble regime, the plasma wake is the solitary plasma cavity (Bubble), which is free from cold plasma electrons, behind the laser pulse. The trapped plasma electrons or external electron beam is accelerated and simultaneously undergoes betatron os- cillations in the Bubble. They efficiently radiate X-rays due to the betatron wiggling. Therefore, the laser-plasma X-ray source combines the acceleration and wiggling processes. Moreover, it dramatically downsizes the radiation source. The laser- plasma acceleration system is very compact (several meters) compared with that of conventional syn- chrotrons or free electron lasers (hundreds meters) while the effective plasma wiggler is also small (several cen- timeters) compared to the magnet wiggler (tens meters). Since the ultrahigh intensity laser-plasma interaction is strongly nonlinear phenomenon, which is rich in com- plex processes, the theoretical analysis of this phe- nomenon is very difficult. The numerical simulation is still very important and powerful tool for the interaction investigation as well as the interpretation of the laser- plasma experiments. The most efficient numerical meth- od for simulation of laser-plasma interaction among various numerical schemes is particle in cell (PIC) method [5]. However, this method requires a lot of com- puter resources for simulation of full-scale experiments. Several quick PIC codes with so-called quasistatic ap- proximation [6] have been developed [7, 8] to accelerate computer simulations. In this paper we present a quick PIC code with quasistatic approximation for simulation of laser-plasma synchrotron radiation. Let a laser pulse propagates along x -axis, and two- dimensional axially symmetrical geometry is adopted. The ions are considered to be immobile. It is assumed in the framework of quasistatic approximation that the plasma quickly responds on laser field, and plasma fields are the functions of r and ctx −=ξ , where c is the speed of light. The characteristic times of the laser pulse and the bunch of the trapped electrons are much longer than the plasma response time. Fist, plasma re- sponse is calculated, then the evolution of the laser pulse and bunch is found in the plasma field distribu- tion, and then again plasma response is calculated for the new shape of the bunch and the pulse. Like in PIC codes plasma is modelled by macro- particles. Each plasma macroparticle is determined by a longitudinal coordinate, ξ , a transverse coordinate, r , momentum components, rp and xp , a mass m , and a charge q . All particle parameters are functions of ξ , thus, ξ plays a role of time. Unlike PIC technique, the plasma macroparticles are the Langragian particles, which move along trajectory line determined by the ini- tial value of transversal coordinate, 0r . Information propagates from the head of laser pulse ( 0=ζ ) to nega- tive values of ζ within the light speed frame. Accord- ingly, we integrate equation of motion slice by slice from 0=ζ to L−=ζ , where L is the length of the simulation region. The plasma is assumed to be cold that is 0=rp and 0=xp at 0=ζ . Introducing a plasma wake potential xA−=Φ ϕ , the equations for the wake potentials and magnetic filed in quasistatic approximations in axially symmetrical ge- ometry (no dependence on azimuthal angle θ ) are ρ−=Φ∆ ⊥ xj , (1) ,1 2 2 xjrB rr +Φ ∂ ∂= ∂ ∂ ξ θ , (2) where the gauge xA−=ϕ is used, ϕ is the scalar poten- tial, A is the vector potential, θB is the azimuthal mag- netic filed, j is the density of electron current, ρ is the electron density. We use dimensionless units, normaliz- ing the time by pω/1 , the velocity by the speed of light c , the lengths by pc ω/ , the electromagnetic fields by qmc p /ω− , the electron density n by the background ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3. Series: Nuclear Physics Investigations (47), p. 154-156.154 density 0n , ( ) 2/1 0 2 /4 mnqp πω = is the plasma frequen- cy. The obtained equations are similar to that in Ref. [7]. In quasistatic approximations 1=Φ+−= xpH γ , (3) is the integral of motion [3], where ( ) 2/12221 app rx +++=γ is the relativistic gamma- factor of the electron, 2a is the ponderomotive po- tential of the laser pulse [7]. xp and γ can be found as functions of ξ , r , rp and 2 la from Eq. (3). The equa- tions of plasma macroparticle motion are [7] θγ ξ B r a rd dpr −           ∂ ∂ − ∂ Φ∂ Φ+ = 2 2 1 1 1 , (4) Φ+ = 1 rp d dr ξ . (5) Making the use of Eqs. (4) and (5), the current den- sity and the electron density can be found by the way adopted in PIC methods [5]. Eqs. (1)-(5) are solved using a finite difference scheme, in which a grid is set up in both the axial coordinate ξ and the radial coordinate r . The evolution of the laser fired is described by a parabolic equation (see in more detail Ref. [7]). A parti- cle is considered to be trapped if longitudinal velocity of the particle is more than the bubble velocity bx vv > . The bubble velocity is calculated from the solution of equation for dynamics of the laser pulse. The dynamics of the particle trapped is described by equations [ ]( ) radv q dt d FBvEp +×+ − = 1 , (6) γ rp dt dr = , b x v p dt d −= γ ξ , (7) where radF is the radiation reaction force [9]. The emission of electromagnetic fields by the trapped elec- trons is included into the code. The emitted radiation ex- erts recoil on the electron. The recoil force is also in- cluded. The radiation generation and recoil force are taken into account only for the trapped particle because they are only the highly relativistic particles given the main contribution into the radiated power. The reversal effect of trapped electrons on the plasma wake is taken into account as well. We verified that the code developed gave the results, which were similar to that obtained by a fully 3D rela- tivistic PIC code [5] in a strongly nonlinear regime. For simplicity, we consider the laser-plasma interaction ne- glecting the trapped particle and the evolution of laser pulse. This regime corresponds to the beginning of the interaction when a laser pulse changes insignificantly and number of the particles trapped is small. The inci- dent laser pulse is circularly polarized, has the Gaussian envelope ( )2222 0 //exp ll Lrraa ξ−−= , and the wave- length 82.0=λ μm. The parameters of the laser pulse are 5=lr , 2=lL , 100 =a . The pulse propagates in plas- ma with the density 19 0 10−=n cm-3. The result of simu- lation is shown in Fig.1. It presents the density plot of the short, ultrahigh intensity laser pulse propagating in plasma, calculated by (a) the axially symmetrical 2D PIC hybrid code; (b) the fully 3D PIC code [5]. The darker is gray color, the higher is the electron density. It is seen from Fig.1 that the results obtained are in a good agreement with the simulation results obtained by the fully 3D PIC code. Fig.1. The density plot of short, ultrahigh intensity laser pulse propagating in plasma, calculated by (a) axially symmetrical 2D PIC hybrid (b) by fully 3D PIC code [5]. The darker is gray color, the higher is electron density To simulate the X-ray generation we assume that the electron radiation spectrum is synchrotron like at any given moment of time. The spectrum integrated over a solid angle is defined by a universal function )/( cS ωω , where ∫ ∞ = x dyyKxxS )()( 3/5 , cω is the critical frequency [9]. The critical frequency is given by the relation ( ) ⊥= Fc 22/3 γω ; ⊥F is the transversal to the electron momentum force. In our code, we follow trajectories of each electron and calculate the emission during the in- teraction. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3. Series: Nuclear Physics Investigations (47), p. 154-156.155 190 -20 20 -20 20 0 19 r x-t x-t a) b) las er pulse laser pulse laser pulse We simulate the X-ray emission from an external electron bunch with 310=γ , length 40=bL , radius 3=br with total charge 4=bQ nC, propagating in the bubble. The photon flux, XF , (photon number per sec- ond in 0.1% bandwidth) from the bunch as a function of the photon energy is shown in Fig.2. The photon flux obtained is in a good agreement with estimations for the flux [1]. Fig.2. The photon flux as function of the photon energy CONCLUSION The X-ray generation from a relativistic electron bunch propagating in the laser plasma is modeled by the 2D axially symmetrical hybrid PIC code. The quasistat- ic approximation is used to accelerate the computation. The code includes the emission of electromagnetic field by the relativistic electrons. The emitted radiation exerts recoil on the electron and the recoil force is included into the code. The results obtained are in a good agree- ment with that obtained by the fully 3D electromagnetic PIC [5]. This work has been supported by Russian Founda- tion for Basic Research (Grant No. 04-02-16684). REFERENCES 1. S. Kiselev, A. Pukhov and I. Kostyukov. X-ray generation in strongly nonlinear plasma waves // Phys. Review Letters. 2004, v.93, №13, p.135004- 1-135004-4. 2. A. Pukhov and J. Meyer-ter-Vehn. Laser wake field acceleration: the highly non-linear broken-wave regime // Applied Physics. 2002, B74, №3, p.355- 361. 3. I. Kostyukov, A. Pukhov and S. Kiselev. Phe- nomenological theory of laser-plasma interaction in bubble regime // Physics of Plasmas. 2004, v.11, №14, p.5256-5264. 4. J. Faure, Y. Glinek, A. Pukhov et al. A laser-plasma accelerator producing monoenergetic electron beam // Nature. 2004, v.431, №9, p.541-544. 5. A. Pukhov. VLPL // Journal of Plasma Physics. 1999, v.61, №10, p. 425-428. 6. P. Sprangle, E. Esarey, and A. Ting. Nonlinear in- teraction of intense laser pulses in plasmas // Physi- cal Review A. 1990, v.41, №8, p.4463-4469. 7. P. Mora and T.M. Antonsen. Kinetic modeling of intense, short laser pulses propagating in tenious plasmas // Physics of Plasmas. 1997, v.4, №1, p.217-229. 8. K.V. Lotov. Fine wakefield structure in the blowout regime of plasma wakefield accelerators // Physical Review Special Topics – Accelerators and Beams. 2003, v.6, №6, p.061301-1-061301-6. 9. L.D. Landau and E.M. Lifshitz. The classical theo- ry of field. M.: “Nauka”, 1988, p.268-277. МОДЕЛИРОВАНИЕ ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ, ОСНОВАННО- ГО НА ПРЕОБРАЗОВАНИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ПЛАЗМЕ, ДВУХМЕРНЫМ РЕЛЯТИВИСТСКИМ ГИБРИДНЫМ КОДОМ И.Ю. Костюков Для моделирования трансформации лазерного излучения разработан двухмерный аксиально-симметрич- ный гибридный численный код, использующий метод частиц в ячейках. В качестве упрощающего предполо- жения использовалось "квазистатическое" приближение (плазменная волна медленно меняется в системе от- счета, связанной с лазерным импульсом). Проведено сравнение с результатами моделирования с помощью полностью трехмерного, электромагнитного кода, использующего метод частиц в ячейках. МОДЕЛЮВАННЯ ДЖЕРЕЛА СИНХРОТРОННОГО ВИПРОМІНЮВАННЯ, ЗАСНОВАНОГО НА ПЕРЕТВОРЕННІ ЛАЗЕРНОГО ВИПРОМІНЮВАННЯ В ПЛАЗМІ, ДВОМІРНИМ РЕЛЯТИВІСТСЬКИМ ГІБРИДНИМ КОДОМ І.Ю. Костюков Для моделювання трансформації лазерного випромінювання розроблено двомірний аксіально- симетричний гібридний чисельний код, що використовує метод часток в осередках. Як припущення, що спрощує, використано "квазістатичне" наближення (плазмова хвиля повільно міняється в системі відліку, пов'язаної з лазерним імпульсом). Проведено порівняння з результатами моделювання за допомогою повністю тривимірного, електромагнітного коду, що використає метод часток в осередках. 102 2 1 , eV F x, ( 10 15 ·с -1 ) 0 104 156 ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3. Series: Nuclear Physics Investigations (47), p. 154-156.157 Моделирование источника синхротронного излучения, основанного на преобразовании лазерного излучения в плазме, двухмерным релятивистским гибридным кодом МОДЕЛЮВАННЯ ДЖЕРЕЛА СИНХРОТРОННОГО ВИПРОМІНЮВАННЯ, ЗАСНОВАНОГО НА ПЕРЕТВОРЕННІ ЛАЗЕРНОГО ВИПРОМІНЮВАННЯ В ПЛАЗМІ, ДВОМІРНИМ РЕЛЯТИВІСТСЬКИМ ГІБРИДНИМ КОДОМ