Spectra of cosmic ray electrons and positrons in the Galaxy

A new study of the cosmic ray electron and positron spectra is presented, using an anomalous diffusion model to describe the particles propagation in the Galaxy. The parameters defining the anomalous diffusion have been recently determined from the study of nuclei propagation. The computed electron...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Lagutin, A.A., Osadchiy, K.I., Gerasimov, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79890
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectra of cosmic ray electrons and positrons in the Galaxy / Spectra of cosmic ray electrons and positrons in the Galaxy // Вопросы атомной науки и техники. — 2001. — № 6. — С. 209-213. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79890
record_format dspace
spelling irk-123456789-798902015-04-07T03:01:50Z Spectra of cosmic ray electrons and positrons in the Galaxy Lagutin, A.A. Osadchiy, K.I. Gerasimov, V.V. Anomalous diffusion, fractals, and chaos A new study of the cosmic ray electron and positron spectra is presented, using an anomalous diffusion model to describe the particles propagation in the Galaxy. The parameters defining the anomalous diffusion have been recently determined from the study of nuclei propagation. The computed electron and positron spectra under assumption that positrons, as well as electrons, are accelerated by a galactic source, are in a good agreement with the measurements. The source spectral index, found from experimental data, in this approach turns out to be equal to 2.95 for electrons and positrons. The predicted positron fraction e⁺/(e⁺+e⁻) in high energy region E≈10² ÷10³ GeV is ~0.06. 2001 Article Spectra of cosmic ray electrons and positrons in the Galaxy / Spectra of cosmic ray electrons and positrons in the Galaxy // Вопросы атомной науки и техники. — 2001. — № 6. — С. 209-213. — Бібліогр.: 33 назв. — англ. 1562-6016 PACS 95.30.Jx, 95.85.Ry http://dspace.nbuv.gov.ua/handle/123456789/79890 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Anomalous diffusion, fractals, and chaos
Anomalous diffusion, fractals, and chaos
spellingShingle Anomalous diffusion, fractals, and chaos
Anomalous diffusion, fractals, and chaos
Lagutin, A.A.
Osadchiy, K.I.
Gerasimov, V.V.
Spectra of cosmic ray electrons and positrons in the Galaxy
Вопросы атомной науки и техники
description A new study of the cosmic ray electron and positron spectra is presented, using an anomalous diffusion model to describe the particles propagation in the Galaxy. The parameters defining the anomalous diffusion have been recently determined from the study of nuclei propagation. The computed electron and positron spectra under assumption that positrons, as well as electrons, are accelerated by a galactic source, are in a good agreement with the measurements. The source spectral index, found from experimental data, in this approach turns out to be equal to 2.95 for electrons and positrons. The predicted positron fraction e⁺/(e⁺+e⁻) in high energy region E≈10² ÷10³ GeV is ~0.06.
format Article
author Lagutin, A.A.
Osadchiy, K.I.
Gerasimov, V.V.
author_facet Lagutin, A.A.
Osadchiy, K.I.
Gerasimov, V.V.
author_sort Lagutin, A.A.
title Spectra of cosmic ray electrons and positrons in the Galaxy
title_short Spectra of cosmic ray electrons and positrons in the Galaxy
title_full Spectra of cosmic ray electrons and positrons in the Galaxy
title_fullStr Spectra of cosmic ray electrons and positrons in the Galaxy
title_full_unstemmed Spectra of cosmic ray electrons and positrons in the Galaxy
title_sort spectra of cosmic ray electrons and positrons in the galaxy
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
topic_facet Anomalous diffusion, fractals, and chaos
url http://dspace.nbuv.gov.ua/handle/123456789/79890
citation_txt Spectra of cosmic ray electrons and positrons in the Galaxy / Spectra of cosmic ray electrons and positrons in the Galaxy // Вопросы атомной науки и техники. — 2001. — № 6. — С. 209-213. — Бібліогр.: 33 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lagutinaa spectraofcosmicrayelectronsandpositronsinthegalaxy
AT osadchiyki spectraofcosmicrayelectronsandpositronsinthegalaxy
AT gerasimovvv spectraofcosmicrayelectronsandpositronsinthegalaxy
first_indexed 2025-07-06T03:50:18Z
last_indexed 2025-07-06T03:50:18Z
_version_ 1836867983621750784
fulltext P A R T 2 A N O M A L O U S D I F F U S I O N , F R A C T A L S , A N D C H A O S SPECTRA OF COSMIC RAY ELECTRONS AND POSITRONS IN THE GALAXY A.A. Lagutin, K.I. Osadchiy, V.V. Gerasimov Altai State University, Barnaul, Russia e-mail: gerasimov@theory.dcn-asu.ru A new study of the cosmic ray electron and positron spectra is presented, using an anomalous diffusion model to describe the particles propagation in the Galaxy. The parameters defining the anomalous diffusion have been recently determined from the study of nuclei propagation. The computed electron and positron spectra under assumption that positrons, as well as electrons, are accelerated by a galactic source, are in a good agreement with the measurements. The source spectral index, found from experimental data, in this approach turns out to be equal to 2.95 for electrons and positrons. The predicted positron fraction e+/(e++e–) in high energy region E≈102 ÷103 GeV is ~0.06. PACS 95.30.Jx, 95.85.Ry 1. INTRODUCTION Observations of non-thermal radiation of the Galaxy stimulated investigations of propagation of cosmic ray electrons through the interstellar medium. Since basic paper [1], the problem of calculation of electron spectrum was considered in series of papers (see, for example, [2-10]). The normal diffusion equation for concentration of the electrons with energy E, N(r,t,E), generated by sources distribution with density function S(r,t,E), + ∂ ∂+∆= ∂ ∂ )),,()((),,( EtrNEb E EtrND t N  + ),,,( EtrS  (1) has been used to study the electron energy spectrum modifications in the interstellar medium (ISM). In the equation (1) D is the diffusivity, b(E) describes the energy-loss rate of electrons. Recently, in the papers [11-13], new view of the cosmic ray propagation problem was presented. It has been shown that the ``knee'' in the primary cosmic ray spectrum is due to large free paths (the so called “Lévy flights”) of cosmic rays particles between magnetic domains - traps of the returned type. As the “Lévy flights” distributed according to inverse power law ,2,,3 <∞→∝ −− αα rAr is an intrinsic property of fractal structures, in the fractal-like medium the normal diffusion equation (1) certainly does not hold. Based on this argument in [14] an anomalous diffusion (superdiffusion) model for describing of electrons transport in the fractal-like ISM was proposed. This superdiffusion equation for concentration of the electrons has been presented in the form ),,,(),,()(( ),,())(,( 2/ EtrSEtrNEb E EtrNED t N   + ∂ ∂+ +∆−−= ∂ ∂ αα (2) where ),( αED is the anomalous diffusivity and 2/)( α∆− is the fractional Laplacian (called “Riss operator” [15]). The solution of superdiffusion equation (2) in the case of point impulse source with inverse power spectrum and the behavior of energy spectrum of electrons in high energy region were found. The main goal of this paper is to calculate the spectra of electrons and positrons from sub-GeV to TeV energies in the framework of anomalous diffusion model. We don't use the assumption made in [14] that the mean time of particle staying in a trap <τ> is finite. In this paper, similarly to [13], we suppose that a particle can spend anomalously a long time in a trap. An anomalously long time means that ∞== ∫ ∞ 0 )(ττ ττ qd , so the distribution of particles staying in traps, q(τ), has a tail of power law type ∝ B t-β-1 , t→ ∞ with β<1 (the so called “Lévy trapping time”). 2. FLUX OF ELECTRONS FROM POINT SOURCE The flux of electrons, J(r,t,E), is related to the source S(r0,t0,E0) by the propagator G(r,t,E;r0,t0): ).(),,( ),;,,(),,( 0000 00000 τδ −−× = ∫ ∫∫ ∞− ∞ ttEtrS trEtrGdtdErdEtrJ t E   (3) Here ∫= 0 , )( ' 'E E Eb dEτ (4) )( 0 τδ −− tt reflects the law of energy conservation in the continuous losses approach. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 6, p. 209-213. 209 210 Fig. 1. L- and G-components and total energy spectrum of electrons in ISM Fig. 2. Modulated energy spectrum of electrons near the solar system The propagator in the anomalous diffusion model under consideration has the form [13] ),)),,((( )),,(( 4 ),;,,( /1),( 3 /3 00 αββα αβ βα βα π − − Ψ× ×= tEDr tEDctrEtrG   (5) where .)()()( /3)1,( 1 )( 3 0 ),( 3 ττττ αβββαβα dqrqr ∫ ∞ =Ψ (6) Here )()( 3 rq α is the density of three-dimensional spherically-symmetrical stable distribution with characteristic exponent 2<α ([16]) and )()1,( 1 τβq is one-sided stable distribution with characteristic exponent β [17]. The parameters α, β are determined by the fractional structure of ISM and by trapping mechanism correspondingly, the anomalous diffusivity ),,( βαED - by the constants A and B in the asymptotic behaviour for “Lévy flights” (A) and “Lévy waiting time” (B) distributions: ).,(/),(),,( βαβα EBEAED = The energy-loss rate of relativistic electrons is described by the equation (14) from [9] ),)(( )( 212 2 210 EEEEb EbEbbEb dt dE ++≈ ≈++==− (7) where b0=3.06∗10-16 n (GeV s-1) is for the ionization losses of the electrons in ISM with number density n (cm−3), b1E with b1=10-15 n (s-1) corresponds to the bremsstrahlung energy losses, and b2E2 with b2=1.38 10− 16 (GeV s)-1 represents synchrotron and inverse Compton losses (for B≈5µG and ω≈1(eV/cm3)), E1≈b0/b1, E2≈ b1/b2. Using (7), the solution of the equation (4) relative to E can be presented in the form [9]: . )/())(1(1 )( 1 122 1 0 1 E EEEEe EEE b − −+−− += − ττ Taking into account that b1τ ≤ 3.15 10-8 n 105 =3.15 n 10-3 << 1, we derive from the later equation . )/()(1 )( 1 1221 1 0 E EEEEb EEE − −+− += τ τ (8) With help of the equations (3), (5), (8) it's easy to calculate the flux of electrons for the sources interesting for astrophysics. For example, for point impulse source    < > =Θ Θ−Θ= − ,0,0 ,0,1 )( ),()()(),,( 0 x x x ttTrESEtrS p  δ we have ),)),((( ))(1()),(( )(),,( /11),( 3 2 22 /11 )](/1,min[ ],0max[ 00 22 αββα αβ ττλ τττλ ττ −− −−− + − − Ψ× ×+−× ×= ∫ Er EEbE EdSEtrJ EEbt Tt p T  (9) where ∫= )( ' ' '0 . )( ),,(),( tE E dE Eb EDtE βαλ It should be noted that in the case β = 1, the equation (9) comes to the solution, obtained earlier in [14]. If α = 2, β=1, we have the standard solution [1]. 3. ENERGY SPECTRUM OF ELECTRONS The flux J of electrons due to all sources of Galaxy can be separated into two components: ).1( )1( 1 1 0 kpcrJ kpcrJJ G L R kpc kpc >+ +≤=+= ∫∫  (10) The similar separation is frequently used in the studies of cosmic rays (see, for example, [9] and references therein). The first component (L) in (10) describes the contribution of the nearby sources (at distance r ≤ 1 kpc) to observed flux J. The second component (G) is the contribution of the distant sources (r> 1 kpc) to J. The nearby sources used in our calculations are presented in Table 1. Based on result (9) we suppose ∑ ≤ = kpcr iiTL EtrJJ 1 ),,,( (11) where injection time T ≈ 104 ÷ 105 y. Table 1. List of the nearby supernova remnants Name R, pc t, 105 Source Lopus Loop 400 0.38 [7] Monoceros 600 0.46 [7] Vela 400 0.11 [7] Cyg. Loop 600 0.35 [7] CTB 13 600 0.32 [7] S 149 700 0.43 [7] STB 72 700 0.32 [7] CTB 1 900 0.47 [7] HB 21 800 0.23 [7] HB 9 800 0.27 [7] Monogem 300 0.86 [18] Geminga 400 3.4 [18] Loop I 100 2.0 [18] Loop II 175 4.0 [18] Loop III 200 4.0 [18] Loop IV 210 4.0 [18] The second component (G) is evaluated under assumption that the distant sources (r > 1 kpc) are distributed uniformly both in space and time in the Galaxy. The parameters defining the anomalous diffusivity and used in our calculations have been recently derived from the study of nuclei propagation [12]: α =1.7; β= 0.8; D(E,α,β)=D0(E/1 GeV)δ with D0 ≈ (1 ÷ 4) 10-3 pc1.7 y-0.8 and δ = 0.27. Only one parameter p defining injection spectrum of electrons in the sources is found by fit. Extensive calculations show that the best fit of experimental data may be get at p ≈ 2.95. The spectra of L- and G- components and the total spectrum in ISM are demonstrated in Fig. 1. The experimental energy spectrum of synchrotron electrons in ISM obtained in [19,20] is presented in this figure. To describe the influence of the solar modulation, the force model of [21] is used: )].([ )()]([ )( )( 222 222 mod tEJ cmtE cmE EJ e e Φ+ −Φ+ − = The modulated spectrum near solar system under condition that Φ (t) = 600MeV is shown in Fig. 2. We conclude from Fig. 1 and Fig. 2 that experimental data have a good agreement with our theoretical calculations. 4. ENERGY SPECTRUM OF POSITRONS AND POSITRON FRACTION It is commonly believed that the cosmic ray positrons are a secondary component resulting from the decay of π+, κ+ produced in the nuclear interactions of cosmic rays with the ISM. Previous calculations of the Fig. 3. Modulated energy spectrum of positrons near the solar system Fig. 4. Positron fraction e+/(e++e-) near the solar system secondary positron flux made in [10,22] have shown that the predicted positron fraction is in good agreement with the measurements up to 10 GeV, beyond which the observed flux is higher than that calculated. To reproduce the positron observations above 10 GeV either a primary positron component or a harder interstellar nucleon spectrum is required [9,10,22]. As the harder interstellar nucleon spectrum is not consistent with direct proton measurements, in this paper we suppose that high-energy positron excess is due to contribution of a primary positron component. We demonstrate in Fig. 3 and Fig. 4 that a primary positron component as large as 6% of the primary electron spectrum allows us to reproduce the observed positron spectrum as well as the positron fraction. 5. CONCLUSION We have carried out a new study of the cosmic ray electron and positron spectra using an anomalous diffusion model to describe the particles propagation in the Galaxy. The parameters defining the anomalous diffusion have been recently determined from the study of nuclei propagation. The computed electron and positron spectra under assumption that positrons, as well as electrons, are accelerated by a galactic source, are in a good agreement with the measurements. We have shown that the sources of high-energy (E ≥ 100 GeV) electrons and positrons, observed in the solar system are relatively young local sources (r ≤ 200 pc, t ∼ 105 y), injecting particles during the time T ∼ 104 ÷ 105 y. The behavior of spectra in the low-energy region is defined by distant (r ≥ 1kpc) sources. The source spectral index, found from experimental data, in this approach turns out to be equal to 2.95 for electrons and positrons. The proximity of this exponent to one obtained earlier [12] for nuclei components (p ≈ 2.9) can indicate the same mechanism of particles acceleration. The predicted positron fraction e+/(e++e-) in high energy region E≈102 ÷103 GeV is ~0.06. REFERENCES 1. S.I. Syrovatskii. Distribution of the relativistic electrons in the Galaxy and a spectrum of synchrotron radio emission // Astr. J. 1959, v.36, p. 17- 28 (in Russian). 2. V.L. Ginzburg, S.I. Syrovatskii. Origin of cosmic rays. Pergamon Press, 1964, 384p. 3. G.B. Berkey, C.S. Shen. Origin and propagation of cosmic-ray electrons // Phys. Rev. 1969, v. 188, p. 1994-2010. 4. C.S. Shen. Pulsars and very high-energy cosmic-ray electrons // Ap. J. 1970, v. 162, p. 181- 186. 5. S.V. Bulanov, V.A. Dogel, S.I. Syrovatskii. Electron component of the cosmic rays // Kosmicheskie issledovanija. 1972, v. 10, p. 532-545. 6. R. Cowsik, M.A. Lee. On the sources of cosmic ray electrons // Ap. J. 1979, v. 228, p. 297- 301. 7. J. Nishimura, M. Fujii, T. Taira. Electron spectrum at the high energy side // Proc. of the 16th ICRC, 1979, v. 1, p. 488-493. 8. V.S. Berezinsky, S.V. Bulanov, V.L. Ginzburg et al. Astrophysics of cosmic rays. North Holland, Amsterdam, 1990, 528 p. 9. A.M. Atoyan, F.A. Aharonjan, H.J. Völk. Electrons and positrons in the galactic cosmic rays // Phys. Rev. D. 1995, v. 52, p. 3265-3275. 10. I.V. Moskalenko, A.W. Strong. Production and propagation of cosmic-ray positrons and electrons // Ap. J. 1998, v. 493, p. 694-707. 11. A.A. Lagutin, Yu.A. Nikulin, V.V. Uchaikin. The “knee” in the primary cosmic rays spectrum as consequence of the anomalous diffusion of the particles in the fractal interstellar medium // Nucl. Phys. B. (Proc. Suppl.), 2001, v. 97, p. 267-270. 12. A.A. Lagutin, D.V. Strelnikov, and A.G. Tyumentsev. Mass composition of cosmic rays in anomalous diffusion model: comparison with experiment. Proc. of the 27th ICRC. 2001, v. 5, p. 1896-1899. 13. A.A. Lagutin, V.V. Uchaikin. Fractional diffusion of the cosmic rays. Proc. of the 27th ICRC. 2001, v. 5, p. 1900-1902. 14. A.A. Lagutin, Yu.A. Nikulin, V.V. Uchaikin. Anomalous diffusion of the cosmic rays // Izv. RAN. Ser. fiz. 2002 (to be published). 15. S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional integrals and derivations and some applications. Minsk: “Nauka”, 1987, 688 p. (in Russian). 16. V.M. Zolotarev, V.V. Uchaikin, V.V. Saenko. Superdiffusion and stable laws // ZhETF. 1999, v. 115, p. 1411-1425 (in Russian). 17. V.V. Uchaikin, V.M. Zolotarev. Chance and Stability. VSP. Netherlands, Utrecht, 1999, 570 p. 18. T.A. Lozinskaya Supernova and star wind: interactions with galactic gas. M.: “Nauka”, 1986, 304 p. (in Russian). 19. W.R. Webber, G.A. Simpson and H.V. Cane. Radio emission, cosmic ray electrons, and the production of γ-rays in the Galaxy // Ap. J. 1980, v. 236, p. 448-459. 20. J.D. Peterson, P.R. Higbie, J.M. Rockstroh and W.R. Webber. A new look at galactic polar radio emission and the local interstellar electron spectrum. Proc. of the 26th ICRC. 1999, OG 3.2, p. 17-20. 21. L.J Gleeson, W.I. Axford. Solar modulation of Galactic cosmic rays // Ap. J. 1968, v.154, p. 1011-1026. 22. R.J. Protheroe. On the nature of the cosmic ray positron spectrum // Ap. J. 1982, v. 254, p. 391- 397. 23. J. Nishimura, T. Kobayashi,Y. Komori and N. Tateyama. Observation of primary electron spectrum and its astrophysical significance. Proc of the 25th ICRC. 1997, v. 4, p. 233-236. 24. R.L. Golden, C. Grimani, B.L. Kimbell et al. Observations of cosmic-ray electrons and positrons using an imaging calorimeter // Ap. J. 1994, v. 436, p. 769-775. 25. R.L. Golden, S.A. Stephens, B.G. Mauger et al. Observations of cosmic ray positrons in the region from 5 to 50 GeV // Ap. J. 1987, v. 188, p. 145-154. 26. A.A. Lagutin, Yu.A. Nikulin, V.V. Uchaikin. The “knee” in the primary cosmic rays spectrum as consequence of fractal structure of the galactic magnetic field. Preprint ASU-2000/4, 2000, Barnaul, 16 p. 27. D. Műller, S.V. Barwick, J.J. Beatty et al. Energy spectra of electrons and positrons from 5 to 100 GeV. Proc. of the 25th ICRC. 1997, v. 4, p. 237- 240. 28. G. Barbiellini, G. Basini, R. Belotti et al. Measurements of the positron and electron spectra with the CAPRICE experiment. Proc of the 25th ICRC, 1997, v. 4, p. 221-224. 29. S.W. Barwick, J.J. Beatty, C.R. Bower et al. The energy spectra and relative abundances of electrons and positrons in the galactic cosmic radiation // Ap. J. 1998, v. 498, p. 779-789. 30. J. Nishimura, M. Fujii, T. Taira et al. Emulsion chamber observations of primary cosmic- ray electrons in the energy range 30-1000 GeV // Ap. J. 1980, v. 238, p. 394-409. 31. K. Tang. The energy spectrum of electrons and cosmic-ray confinement: a new measurements and its interpretation // Ap. J. 1984, v. 278, p. 881- 892. 32. M. Boezio, P. Carlson, T. Francke et al. The cosmic-ray electron and positron spectra measyred at 1 1 AU during solar minimum activity // Ap. J. 2000, v. 532, p. 653-669. 33. S.W. Barwick, J.J. Beatty, A. Bhattacharyya et al. Measurements of the cosmic-ray positron fraction from 1 to 50 GeV // Ap. J. 1997, v. 482, L. 191-194. Altai State University, Barnaul, Russia 1. Introduction 2. Flux of electrons from point source 3. Energy spectrum of electrons 4. ENERGY SPECTRUM OF POSITRONS AND POSITRON FRACTION 5. CONCLUSION References