On the averaging procedure over the Cantor set
The procedure of averaging a smooth function over the normalized density of the Cantor set (A. Le Mehaute, R.R. Nigmatullin, L. Nivanen. Fleches du temps et geometric fractale. Paris: “Hermes”, 1998, Chapter 5) has been shown not to reduce exactly the convolution to the classical fractional integral...
Gespeichert in:
Datum: | 2001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/79898 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the averaging procedure over the Cantor set / A.A. Stanislavsky, K. Weron // Вопросы атомной науки и техники. — 2001. — № 6. — С. 245-246. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | The procedure of averaging a smooth function over the normalized density of the Cantor set (A. Le Mehaute, R.R. Nigmatullin, L. Nivanen. Fleches du temps et geometric fractale. Paris: “Hermes”, 1998, Chapter 5) has been shown not to reduce exactly the convolution to the classical fractional integral of Riemann-Liouville type. Although the asymptotic behavior of the self-similar convolution kernel is very close to the product of a power and a log-periodic function, this is not obviously enough to claim the direct relationship between the fractals and the fractional calculus. |
---|