Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma

The results of investigations of the structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings deposited from the filtered vacuum-arc plasma under high voltage pulsed bias potential on the substrate are presented. It was found that axial texture [110] is formed in coatings when pulses potential...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Reshetnyak, E.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79928
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma/ E.N. Reshetnyak // Вопросы атомной науки и техники. — 2014. — № 1. — С. 159-162. — Бібліогр.: 17 назв. — анг.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79928
record_format dspace
spelling irk-123456789-799282015-04-10T03:02:02Z Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma Reshetnyak, E.N. Физика и технология конструкционных материалов The results of investigations of the structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings deposited from the filtered vacuum-arc plasma under high voltage pulsed bias potential on the substrate are presented. It was found that axial texture [110] is formed in coatings when pulses potential with an amplitude 0.5…2.5 kV are applied. For TiN coatings with increasing amplitude of the potential the perfection of texture is increased and the level of residual compressive stress is decreased. As for Ti₀.₅₋xAl₀.₅YxN coatings with increasing amplitude the stress level is increased. In this case the texture is most strong outlined at the amplitude of 1 kV. With further increase in the amplitude the texture perfection becomes weaker. Differences of structure and stress state may occur due to the possibility of phase transition for multi-component coatings Ti-Al-Y-N associated with the decay of the supersaturated solid solution (Ti,Al)N stimulated by high energy ion bombardment. Приведены результаты исследований структуры и напряженного состояния TiN- и Ti₀.₅₋xAl₀.₅YxN-покрытий, полученных из фильтрованной вакуумно-дуговой плазмы при подаче высоковольтного импульсного потенциала смещения на подложку. Обнаружено, что при амплитуде импульсного потенциала 0,5…2,5 кВ в покрытиях формируется аксиальная текстура [110]. Для TiN-покрытий с ростом амплитуды степень совершенства текстуры растет, а уровень остаточных напряжений сжатия падает. Для покрытий Ti₀.₅₋xAl₀.₅YxN с ростом амплитуды уровень напряжений увеличивается. При этом наиболее совершенная текстура наблюдается при амплитуде 1 кВ. При дальнейшем увеличении амплитуды степень совершенства текстуры уменьшается. Различия структуры и напряженного состояния покрытий могут быть обусловлены возможностью фазового перехода в многокомпонентных покрытиях Ti-Al-Y-N, связанного с распадом пересыщенного твердого раствора (Ti, Al)N под действием высокоэнергетичной ионной бомбардировки Наведено результати досліджень структури і напруженого стану TiN- та Ti₀.₅₋xAl₀.₅YxN-покриттів, отриманих з фільтрованої вакуумно-дугової плазми при подачі високовольтного імпульсного потенціалу зміщення на підкладку. Виявлено, що при амплітуді імпульсного потенціалу 0,5…2,5 кВ у покриттях формується аксіальна текстура [110]. Для TiN-покриттів із зростанням амплітуди потенціалу ступінь досконалості текстури зростає, а рівень залишкових напружень стиснення падає. Для покриттів Ti₀.₅₋xAl₀.₅YxN із зростанням амплітуди рівень напружень збільшується. При цьому найбільш досконала текстура спостерігається при амплітуді 1 кВ. При подальшому збільшенні амплітуди ступінь досконалості текстури зменшується. Відмінності структури і напруженого стану покриттів можуть бути обумовлені можливістю фазового переходу в багатокомпонентних покриттях Ti-Al-Y-N, пов'язаного з розпадом пересиченого твердого розчину (Ti, Al)N під впливом високоенергетичного іонного бомбардування. 2014 Article Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma/ E.N. Reshetnyak // Вопросы атомной науки и техники. — 2014. — № 1. — С. 159-162. — Бібліогр.: 17 назв. — анг. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/79928 621.793: 548.73 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика и технология конструкционных материалов
Физика и технология конструкционных материалов
spellingShingle Физика и технология конструкционных материалов
Физика и технология конструкционных материалов
Reshetnyak, E.N.
Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma
Вопросы атомной науки и техники
description The results of investigations of the structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings deposited from the filtered vacuum-arc plasma under high voltage pulsed bias potential on the substrate are presented. It was found that axial texture [110] is formed in coatings when pulses potential with an amplitude 0.5…2.5 kV are applied. For TiN coatings with increasing amplitude of the potential the perfection of texture is increased and the level of residual compressive stress is decreased. As for Ti₀.₅₋xAl₀.₅YxN coatings with increasing amplitude the stress level is increased. In this case the texture is most strong outlined at the amplitude of 1 kV. With further increase in the amplitude the texture perfection becomes weaker. Differences of structure and stress state may occur due to the possibility of phase transition for multi-component coatings Ti-Al-Y-N associated with the decay of the supersaturated solid solution (Ti,Al)N stimulated by high energy ion bombardment.
format Article
author Reshetnyak, E.N.
author_facet Reshetnyak, E.N.
author_sort Reshetnyak, E.N.
title Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma
title_short Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma
title_full Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma
title_fullStr Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma
title_full_unstemmed Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma
title_sort structure and stress state of tin and ti₀.₅₋xal₀.₅yxn coatings prepared by the piii&d technique from filtered vacuum-arc plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Физика и технология конструкционных материалов
url http://dspace.nbuv.gov.ua/handle/123456789/79928
citation_txt Structure and stress state of TiN and Ti₀.₅₋xAl₀.₅YxN coatings prepared by the PIII&D technique from filtered vacuum-arc plasma/ E.N. Reshetnyak // Вопросы атомной науки и техники. — 2014. — № 1. — С. 159-162. — Бібліогр.: 17 назв. — анг.
series Вопросы атомной науки и техники
work_keys_str_mv AT reshetnyaken structureandstressstateoftinandti05xal05yxncoatingspreparedbythepiiidtechniquefromfilteredvacuumarcplasma
first_indexed 2025-07-06T03:51:36Z
last_indexed 2025-07-06T03:51:36Z
_version_ 1836868065830109184
fulltext ISSN 1562-6016. ВАНТ. 2014. №1(89) 159 UDC 621.793: 548.73 STRUCTURE AND STRESS STATE OF TiN AND Ti0.5-XAl0.5YXN COATINGS PREPARED BY THE PIII&D TECHNIQUE FROM FILTERED VACUUM-ARC PLASMA E.N. Reshetnyak National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: reshetnyak@kipt.kharkov.ua The results of investigations of the structure and stress state of TiN and Ti0.5-xAl0.5YxN coatings deposited from the filtered vacuum-arc plasma under high voltage pulsed bias potential on the substrate are presented. It was found that axial texture [110] is formed in coatings when pulses potential with an amplitude 0.5…2.5 kV are applied. For TiN coatings with increasing amplitude of the potential the perfection of texture is increased and the level of residual compressive stress is decreased. As for Ti0.5-xAl0.5YxN coatings with increasing amplitude the stress level is increased. In this case the texture is most strong outlined at the amplitude of 1 kV. With further increase in the amplitude the texture perfection becomes weaker. Differences of structure and stress state may occur due to the possibility of phase transition for multi-component coatings Ti-Al-Y-N associated with the decay of the supersaturated solid solution (Ti,Al)N stimulated by high energy ion bombardment. INTRODUCTION The vacuum arc nitride coatings on the base of TiN are widely used for hardening the surface of the parts of machines and cutting tools. Most of the recent studies are now focusing on multicomponent and nano- structured nitride-based coatings. The experimental data available indicate that new types coatings may have unique properties for usage in various branch of indus- try: high hardness, wear resistant, thermal stability and oxidation resistance and enough low friction coefficient [1, 2]. However the droplet phase of the cathode mate- rial in the plasma stream of the vacuum-arc plasma source worsens the quality of the coating deposited. High level of the surface roughness and residual stress restrict essentially the possibilities of usage such coat- ings for the purpose of hardening the machinery friction pairs [3-5]. The last years were marked by considerable progress in development the vacuum-arc deposition method. Three main techniques should be noted which facilitate the qualitative vacuum-arc nitride coatings deposition: plasma filtration, applying high voltage pulses to the substrate, choice of proper composition of multi- component nanostructured coatings. Plasma immersion ion implantation and deposition (PIII&D) is a technique for the effective combination of these techniques. Gen- erally, in PIII&D vacuum arc source with magnetic fil- ter for plasma is used and negative bias voltages ranging from a few hundred to a few thousand volts are applied to the substrates in a pulsed manner [6-13]. The use of plasma filtration can significantly im- prove the coatings quality by formation of a more uni- form structure with low surface roughness due to a re- duction of large macroparticles content in the plasma flow. А high-voltage pulsed bias applied to the substrate permits the deposition of thicker coatings with good adhesion and low residual stresses at low substrate tem- perature. There are the data in literature on the effect of pulses amplitude on the level of residual stresses in simple single-phases nitrides (e.g. TiN, AlN) [11-13]. An in- crease in internal stresses is observed up to -500 V pulse bias voltage, which gradually decrease, with increasing bias voltage magnitude. The observed change in the level of intrinsic stress is explained with the model pro- posed by Davies [14]. This model is based on the com- petitive effects that occur during subplantation of ions under the growing surface of the film and its relaxation during the high energy ion bombardment. In our recent papers we studied the structure and some properties of the coatings Ti0.5Al0.5N, alloyed with small additions of Y (up to 1 at.%), which were produced by PIII&D technique. Multi-component nitride coatings had significantly better the oxidation resistance and wear resistance in comparison with titanium nitride [9, 10]. It was found that the dependence of the residual stress on the pulsed voltage potential is non-monotonic with a minimum when the amplitude was of 1 kV. In this paper, a comparative study of the structure and stress state of Ti0.5-xAl0.5YxN, and TiN coatings deposited under identical conditions from the filtered vacuum arc plasma under pulsed bias potential on the substrate was carried out. MATERIALS AND METHODS Coatings of Ti-N and Ti-Al-Y-N systems of 6…8 micron thickness were deposited from the filtered vacuum arc plasma at a nitrogen pressure of 0,1 Pa and arc current of 100 A using cathodes made of commercially pure titanium and alloy Ti0.49Al0.5Y0.01 respectively. Deposition was carried out on substrates made of tool steel with a diameter of 17 mm and thickness of 3 mm. The negative potential pulses with an amplitude AU in the range 0…2.5 kV were applied to the substrate with a repetition frequency of 24 kHz. The pulse duration was 5 μs. In the intervals between pulses the substrate was under a self-consistent "floating" potential -(3…15) V. The elemental composition of the coatings was controlled by X-ray fluorescence analysis at the vacuum scanning crystal-diffraction spectrometer SPRUT. X-ray diffraction studies, including analysis of the phase composition, determination of residual stresses 160 ISSN 1562-6016. ВАНТ. 2014. №1(89) and the parameters of the crystal structure were carried out in the filtered Cu-Kα radiation on DRON-3 diffractometer. The grain size (coherent scattering zone) in the nitride films was calculated from the (111) or (220) peak broadening, using the Scherrer relation. Determination of residual macroscopic stresses in the films was carried out by X-ray tensometry (sin2ψ- method modified for textured samples). Stresses were calculated using a-sin2ψ plots in approach of quasi- isotropic symmetric biaxial stress state. RESULTS AND DISCUSSION X-ray fluorescence analysis of the elemental compo- sition of the coatings showed that the change in the am- plitude of the pulse bias potential on the substrate in the range 0…2.5 kV has no significant effect on the ele- mental composition of the coatings. The ratio of metal components in a multicomponent cathode is well repro- duced in the films. According to X-ray diffraction data the single crystal phase in the coatings is the cubic nitride with the struc- ture of titanium nitride (structural type NaCl). Diffrac- tion patterns of the investigated coatings are shown in Fig. 1. The ratio of the intensities of the diffraction peaks differs from the value characteristic to the chaotic orien- tation of crystallites in which the strongest line is (200), which indicates the presence of texture. Three reflec- tions: (111), (200) and (220) were taken into account when texture coefficients TC were calculated. The tex- ture coefficient was defined as [13]: ( ) ( ) ( ) ( ) 0 0/ / /hkl hkl hkl hkl C m mT nI I I I⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦∑ , where ( )hkl mI is the measured intensity of (hkl) reflection; ( ) 0 hklI is the theoretical relative intensity of (hkl) reflection for pow- der material with random-orientation and n is the total number of observed reflections ( 3n = ). The results of the calculations are presented in Fig. 2. When substrate bias potential is floating, the crystal- lites of nitride are orientated with (111) plane parallel to the surface of the coating. The average size of coherent scattering regions in the coatings is 20 nm. When high- voltage pulses of potential with an amplitude 0.5…2.5 kV are applied to the substrate a change in preferred orientation occurs with the formation of a strong axial texture [110]. The only detectable line in the diffraction patterns is (220). Analysis of the diffrac- tion patterns and rocking curves have shown that with increasing amplitude of the pulse potential the degree of perfection of TiN coatings texture increases and the grain size is in the range 11…14 nm. For Ti0.5-xAl0.5YxN coatings the texture is most strong outlined at the amplitude of 1 kV. With further increase in the amplitude the texture perfection becomes weaker and the grain size decreases from 14 to 7 nm. In the diffractogram of the film Ti0.5-xAl0.5YxN deposited with the amplitude of the pulses of 2.5 kV the intensity of the (220) line is significantly reduced and one more, weak line appeared, which can be identified as (200). However, a closer examination revealed a large differ- ence in the values of the nitride lattice period, calculated on the positions of these diffraction lines, which amounted to (0.4209 ± 0.0003) nm and (0.4238 ± 0.0005) nm respectively. One could assume that these lines belong to two different cubic nitride phases of various compositions. This hypothesis was indirectly confirmed in further studies. 30 40 50 60 70 80 S 2 ,5 kV 1,5 kV 1 kV 0,5 kV F loat In te ns ity , a rb . u ni ts . 2θ , degree (2 22 ) (3 11 ) (2 20 ) S(2 00 ) (1 11 ) a 3 0 4 0 5 0 6 0 7 0 8 0 SS 1 ,5 k V (3 11 ) (2 22 ) (2 00 ) (2 20 ) (1 11 ) 2 ,5 k V 1 k V 0 ,5 k V In te ns ity , a rb . u ni ts . 2 θ , d eg ree F lo a t b Fig. 1. X-ray diffraction patterns of vacuum-arc coatings deposited from the filtered plasma at different amplitude pulsed substrate bias potential (emission of Cu-Kα, dashed lines show the position of peaks of TiN, “S” indicates the line of the substrate): a – coating TiN; b – coating Ti0.5-xAl0.5YxN X-ray tensometry method was applied to investigate the strain/stress state which has allowed determine the level of residual stresses and the period a0 of the crystal lattice of textured nitride in the unstressed state. Values of a0 periods for both the considered systems are not varied with the amplitude of the pulse substrate bias potential. In the TiN films the value of the period is closed to 0.424 nm, characteristic of the unstressed nitride of stoichiometric composition. The period of the crystal lattice in the coatings Ti0.5-xAl0.5YxN is slightly smaller than 0.418 nm, calculated according to Vegard's law for the lattice of the solid solution of cubic TiN (aTiN = 0.424 nm) and AlN (aAlN = 0.412 nm) with an equal content of Ti and Al atoms. The presence of yttrium in solid solution is improbable because of the ISSN 1562-6016. ВАНТ. 2014. №1(89) 161 large difference in periods of nitrides (aYN = 0.489 nm). Some authors think that in the films of such composition a solid solution (Ti, Al)N is formed with halfway replacement of Ti atoms in the cubic structure of TiN with smaller atoms Al, and Y is not dissolved in the lattice and involved in the process of grain boundaries formation [15, 16]. 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 Bias (kV) Te xt ur e co ef fic ie nt (111) (200) (220) a 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 Bias (kV) Te xt ur e co ef fic ie nt (111) (200) (220) b Fig. 2. Dependence of the texture coefficient for the (111), (200) and (220) reflections on the pulse bias potential: a – coating TiN; b – coating Ti0.5-xAl0.5YxN Supersaturated solid solution (Ti,Al)N is metastable, and under certain conditions, the formation of heterophase films is possible due to the partial decomposition of this phase. As the result of such process the nitrides rich in one metal component are formed. Our experiments show the possibility of such phase transition in Ti0.5-xAl0.5YxN films deposited at the amplitude of pulsed substrate bias potential over 1 kV. It is likely that (220) peak in the diffraction pattern of the coating deposited at 2.5 kV corresponds to the undecayed component of the solid solution, and the (200) peak belongs to the titanium-enriched nitride. Another product of decomposition, aluminum-rich nitride, can not be detected in the diffraction pattern due to its lower reflectivity. Such phase transformation may be the reason of differences in the behavior of the dependence of residual compressive stress on the amplitude of the pulsed potential for TiN and Ti0.5-xAl0.5YxN coatings shown in Fig. 3. For TiN the well-known dependence of the residual stress is non-monotonic with a maximum at 0.5 kV. For Ti0.5-xAl0.5YxN coatings the dependence is non-monotonic with a minimum. The level of stress increases when the amplitude exceeds 1 kV. Such an increase can be attributed to an increase in specific volume value which should occur in the film fixed to the substrate as the result of decomposition of metastable supersaturated solid solution (Ti, Al)N on the stable cubic TiN and hexagonal AlN phases. Estimates show that the increase in specific volume can reach 10%, which produce compressive stress 5 GPa. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 4 6 8 10 12 St re ss (G Pa ) Bias (kV) - TiN - (Ti,Al)N Fig. 3. Influence of the amplitude of the pulsed bias potential on the level of residual compressive stresses on TiN and Ti0.5-xAl0.5YxN coatings Another indirect evidence of phase transformation is the hardness of the coatings. The hardness of TiN coatings is 30…35 GPa and practically does not depend on the amplitude of the bias potential on the substrate [17]. Coatings Ti0.5-xAl0.5YxN also are characterized by relatively high hardness of 35 GPa regardless the substrate bias potential value in the range 0.5…1.5 kV [10]. The exception is the coating deposited at amplitude of pulse potential 2.5 kV, which hardness is reduced to 25 GPa may be due to the presence of the relatively “soft” AlN phase. CONCLUSIONS Thus, the differences in the stress state of TiN and Ti0.5-xAl0.5YxN (with x∼0.01) coatings deposited by the filtered vacuum-arc plasma under pulsed substrate bias potential were revealed. The crystalline phase in the films is a nitride with a cubic NaCl-type structure. In the Ti0.5-xAl0.5YxN coatings the atoms of aluminum enter into a solid solution (Ti, Al)N. It was found that axial texture [110] is formed in coatings when pulses poten- tial with an amplitude 0.5…2.5 kV are applied. For TiN films, the dependence of the residual com- pressive stress on the amplitude of the pulsed voltage potential is non-monotonic with a maximum at 0.5 kV. Decrease in the residual stress level and increase perfec- tion of texture takes place when the amplitude of the potential is increased in the range 0.5…2.5 kV. For multi-component coatings Ti0.5-xAl0.5YxN the dependence of the residual stress on the amplitude of the pulsed voltage potential is non-monotonic with a minimum at 1 kV. In this case the texture is most strong. With further increase in the amplitude the tex- ture perfection becomes weaker and stress increases. It is shown that the dependence of the residual stress for multi-component coatings Ti-Al-Y-N may occur due to the possibility of phase transition associated with the decay of the supersaturated solid solution (Ti, Al)N stimulated by high energy ion bombardment. Acknowledgements The author would like to thank V.V. Vasyliev, A.A. Luchaninov, and V.E. Strel’nitskij for depositing the samples and for helpful discussions. 162 ISSN 1562-6016. ВАНТ. 2014. №1(89) REFERENCES 1. S. Veprek, M. Veprek-Heijman, P. Karvankova, J. Prochazka. Different approaches to superhard coatings and nanocomposites // Thin Solid Films. 2005, v. 476, p. 1-29. 2. P. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens. Microstructural design of hard coatings // Progress in Materials Science. 2006, v. 51, p.1032-1114. 3. A. Anders. Cathodic Arcs. From Fractal Spots to Energetic Condensation // Springer. Series on Atomic, Optical, and Plasma Physics. 2009, 540 p. 4. I.I. Aksenov, V.E. Strel’nitskij, V.V. Vasilyev, D.Yu. Zaleskij. Efficiency of magnetic plasma filters // Surf. Coat. Technol. 2003, v. 163-164, p. 118-127. 5. S.G. Harris, A.C. Vlasveld, E.D. Doyle, P.J. Dolder. Dry machining-commercial viability through filtered arc vapour deposited coatings // Surface and Coatings Technology. 2000, v.133-134, p. 383-388. 6. S.H.N. Lim, D.G. McCulloch, M.M. Bilek, D.R. Mc Kenzie. Relation between microstructure and stress in titanium nitride films grown by plasma immer- sion ion implantation // Journ Appl Phys. 2003, v. 93, p. 4283-4288. 7. M.M. Bilek, D.R. Mc Kenzie, W. Moeller. Use of low energy and high frequency PBII during thin film deposition to achieve relief of intrinsic stress and micro- structural changes // Surface & Coatings Technology. 2004, v. 186, p. 21-28. 8. M.M. Bilek, D.R. Mc Kenzie. A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions // Surface & Coatings Technology. 2006, v. 200, p. 4345-4354. 9. V.A. Belous, V.V. Vasyliev, V.S. Goltvyanytsya, et al. Structure and properties of Ti-Al-Y-N coatings deposited from filtered vacuum-arc plasma // Surface & Coatings Technology. 2011, v. 206, p. 1720-1726. 10. V.A. Belous, V.V. Vasyliev, A.A. Luchaninov, et al. Cavitation and abrasion resistance of Ti-Al-Y-N coat- ings prepared by the PIII&D technique from filtered vacuum-arc plasma // Surface & Coatings Technology. 2013, v. 223, p. 68-74. 11. G.P. Zhang, G.J. Gaob, X.Q. Wang, et al. Influ- ence of pulsed substrate bias on the structure and proper- ties of Ti-Al-N films deposited by cathodic vacuum arc // Applied Surface Science. 2012, v. 258, p. 7274-7279. 12. S. Mukherjee, F. Prokert, E. Richter, W. Möller. Comparison of TiN and Ti1_xAlxN coatings deposited on Al using plasma immersion ion implantation assisted deposition // Surface & Coatings Technology. 2005, v. 200, p. 2459-2464. 13. S. Mukherjee, F. Prokert, E. Richter, W. Moller. Intrinsic stress and preferred orientation in TiN coatings deposited on Al using plasma immersion ion implantation assisted deposition // Thin Solid Films. 2003, v. 445, p. 48-53. 14. C.A. Davis. A simple model for the formation of compressive stress in thin films by ion bombardment // Thin Solid Films. 1993, v. 226, p. 30-34. 15. F. Rovere, P.H. Mayrhofer, A. Reinholdt, J. Mayer, et al. The effect of yttrium incorporation on the oxidation resistance of Cr-Al-N coatings // Surface & Coatings Technology. 2008, v. 202, p. 5870-5875. 16. M. Moser, P.H. Mayrhofer, L. Szakely, et al. In- fluence of bipolar DC magnetron sputtering on elemental composition and micro-structure of Ti–Al–Y–N thin films // Surf. Coat. Technol. 2008, v. 203, p. 148-155. 17. V. Vasyliev, A. Luchaninov, E. Reshetnyak, et al. Influence of the pulsed substrate potential on the hardness and structure of TiN coatings deposited from the filtered vacuum-arc hlasma // Proc. 4th Int. Conf. “Physical and chemical principles of formation and modification of micro- and nanostructures”, Kharkov, Ukraine, 2010, v. 1, p. 85-88. Статья поступила в редакцию 02.12.2013 г. СТРУКТУРА И НАПРЯЖЕННОЕ СОСТОЯНИЕ TiN- И Ti0.5-XAl0.5YXN-ПОКРЫТИЙ, ПОЛУЧЕННЫХ МЕТОДОМ PIII&D ИЗ ФИЛЬТРОВАННОЙ ВАКУУМНО-ДУГОВОЙ ПЛАЗМЫ Е.Н. Решетняк Приведены результаты исследований структуры и напряженного состояния TiN- и Ti0.5-xAl0.5YxN-покрытий, полу- ченных из фильтрованной вакуумно-дуговой плазмы при подаче высоковольтного импульсного потенциала смещения на подложку. Обнаружено, что при амплитуде импульсного потенциала 0,5…2,5 кВ в покрытиях формируется аксиаль- ная текстура [110]. Для TiN-покрытий с ростом амплитуды степень совершенства текстуры растет, а уровень остаточных напряжений сжатия падает. Для покрытий Ti0.5-xAl0.5YxN с ростом амплитуды уровень напряжений увеличивается. При этом наиболее совершенная текстура наблюдается при амплитуде 1 кВ. При дальнейшем увеличении амплитуды степень совершенства текстуры уменьшается. Различия структуры и напряженного состояния покрытий могут быть обусловле- ны возможностью фазового перехода в многокомпонентных покрытиях Ti-Al-Y-N, связанного с распадом пересыщенно- го твердого раствора (Ti, Al)N под действием высокоэнергетичной ионной бомбардировки. СТРУКТУРА I НАПРУЖЕНИЙ СТАН TiN- ТА Ti0.5-XAl0.5YXN-ПОКРИТТІВ, ОТРИМАНИХ МЕТОДОМ PIII&D З ФІЛЬТРОВАНОЇ ВАКУУМНО-ДУГОВОЇ ПЛАЗМИ О.М. Решетняк Наведено результати досліджень структури і напруженого стану TiN- та Ti0.5-xAl0.5YxN-покриттів, отриманих з філь- трованої вакуумно-дугової плазми при подачі високовольтного імпульсного потенціалу зміщення на підкладку. Виявле- но, що при амплітуді імпульсного потенціалу 0,5…2,5 кВ у покриттях формується аксіальна текстура [110]. Для TiN- покриттів із зростанням амплітуди потенціалу ступінь досконалості текстури зростає, а рівень залишкових напружень стиснення падає. Для покриттів Ti0.5-xAl0.5YxN із зростанням амплітуди рівень напружень збільшується. При цьому най- більш досконала текстура спостерігається при амплітуді 1 кВ. При подальшому збільшенні амплітуди ступінь доскона- лості текстури зменшується. Відмінності структури і напруженого стану покриттів можуть бути обумовлені можливістю фазового переходу в багатокомпонентних покриттях Ti-Al-Y-N, пов'язаного з розпадом пересиченого твердого розчину (Ti, Al)N під впливом високоенергетичного іонного бомбардування.