The C-80 cyclotron system. Current status
The C-80 cyclotron system is intended to produce proton beams with an energy ranging from 40 up to 80 MeV and current up to 200 μA. The beams with the aforementioned parameters will be used for commercial production of a wide assortment of isotopes for medicine including radiation generators. In add...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79979 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The C-80 cyclotron system. Current status / O.L. Veresov, Yu.N. Gavrish, A.V. Galchuck, S.V. Grigorenko, V.I. Grigoriev, L.E. Korolev, A.N. Kuzhlev, V.G. Mudrolyubov, A.P. Strokach, S.S. Tsygankov, S.A. Artamonov, E.M. Ivanov, G.A. Ryabov // Вопросы атомной науки и техники. — 2014. — № 3. — С. 3-7. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79979 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-799792015-04-10T03:02:11Z The C-80 cyclotron system. Current status Veresov, O.L. Gavrish, Yu.N. Galchuck, A.V. Grigorenko, S.V. Grigoriev, V.I. Korolev, L.E. Kuzhlev, A.N. Mudrolyubov, V.G. Strokach, A.P. Tsygankov, S.S. Artamonov, S.A. Ivanov, E.M. Ryabov, G.A. Теория и техника ускорения частиц The C-80 cyclotron system is intended to produce proton beams with an energy ranging from 40 up to 80 MeV and current up to 200 μA. The beams with the aforementioned parameters will be used for commercial production of a wide assortment of isotopes for medicine including radiation generators. In addition, creation of a special beamline to form homogeneous proton beams of ultra-low intensity (10⁷…10⁹) will allow the proton therapy of eye diseases and superficial oncological diseases as well as tests of radioelectronic components for radiation resistance to be performed. The equipment of the cyclotron and the first section of the beam transport system has been manufactured, tested at test facilities in the Efremov Institute, installed in the PNPI and made ready for acceptance tests. Циклотронный комплекс Ц-80 предназначен для получения протонных пучков с энергией 40…80 МэВ и током до 200 мкА. Пучки с такими параметрами будут использоваться для производства широкого спектра изотопов медицинского назначения, в том числе генераторов излучения, в коммерческих масштабах. Кроме того, создание специального тракта формирования гомогенных пучков протонов ультрамалой интенсивности (10⁷…10⁹) позволит осуществлять протонную лучевую терапию глаза и поверхностных форм онкологических заболеваний, а также проводить испытания радиоэлектронных изделий на радиационную стойкость. Оборудование циклотрона и первого участка системы транспортировки изготовлено и испытано на стендах НИИЭФА им. Д.В. Ефремова, смонтировано в ПИЯФ им. Б.П. Константинова и подготовлено для проведения приемосдаточных испытаний. Циклотронний комплекс Ц-80 призначений для отримання протонних пучків з енергією 40...80 МеВ і струмом до 200 мкА. Пучки з такими параметрами використовуватимуться для виробництва широкого спек-тра ізотопів медичного призначення, у тому числі генераторів випромінювання, в комерційних масштабах. Крім того, створення спеціального тракту формування гомогенних пучків протонів ультрамалої інтенсивності (10⁷…10⁹) дозволить здійснювати протонну променеву терапію ока і поверхневих форм онкологічних захворювань, а також проводити випробування радіоелектронних виробів на радіаційну стійкість. Устаткування циклотрона і першої ділянки системи транспортування виготовлене та випробуване на стендах НДІЕФА ім. Д.В. Єфремова, змонтовано в ПІЯФ ім. Б.П. Константинова і підготовлено для проведення приймальноздавальних випробувань. 2014 Article The C-80 cyclotron system. Current status / O.L. Veresov, Yu.N. Gavrish, A.V. Galchuck, S.V. Grigorenko, V.I. Grigoriev, L.E. Korolev, A.N. Kuzhlev, V.G. Mudrolyubov, A.P. Strokach, S.S. Tsygankov, S.A. Artamonov, E.M. Ivanov, G.A. Ryabov // Вопросы атомной науки и техники. — 2014. — № 3. — С. 3-7. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.20.dg http://dspace.nbuv.gov.ua/handle/123456789/79979 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Veresov, O.L. Gavrish, Yu.N. Galchuck, A.V. Grigorenko, S.V. Grigoriev, V.I. Korolev, L.E. Kuzhlev, A.N. Mudrolyubov, V.G. Strokach, A.P. Tsygankov, S.S. Artamonov, S.A. Ivanov, E.M. Ryabov, G.A. The C-80 cyclotron system. Current status Вопросы атомной науки и техники |
description |
The C-80 cyclotron system is intended to produce proton beams with an energy ranging from 40 up to 80 MeV and current up to 200 μA. The beams with the aforementioned parameters will be used for commercial production of a wide assortment of isotopes for medicine including radiation generators. In addition, creation of a special beamline to form homogeneous proton beams of ultra-low intensity (10⁷…10⁹) will allow the proton therapy of eye diseases and superficial oncological diseases as well as tests of radioelectronic components for radiation resistance to be performed. The equipment of the cyclotron and the first section of the beam transport system has been manufactured, tested at test facilities in the Efremov Institute, installed in the PNPI and made ready for acceptance tests. |
format |
Article |
author |
Veresov, O.L. Gavrish, Yu.N. Galchuck, A.V. Grigorenko, S.V. Grigoriev, V.I. Korolev, L.E. Kuzhlev, A.N. Mudrolyubov, V.G. Strokach, A.P. Tsygankov, S.S. Artamonov, S.A. Ivanov, E.M. Ryabov, G.A. |
author_facet |
Veresov, O.L. Gavrish, Yu.N. Galchuck, A.V. Grigorenko, S.V. Grigoriev, V.I. Korolev, L.E. Kuzhlev, A.N. Mudrolyubov, V.G. Strokach, A.P. Tsygankov, S.S. Artamonov, S.A. Ivanov, E.M. Ryabov, G.A. |
author_sort |
Veresov, O.L. |
title |
The C-80 cyclotron system. Current status |
title_short |
The C-80 cyclotron system. Current status |
title_full |
The C-80 cyclotron system. Current status |
title_fullStr |
The C-80 cyclotron system. Current status |
title_full_unstemmed |
The C-80 cyclotron system. Current status |
title_sort |
c-80 cyclotron system. current status |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2014 |
topic_facet |
Теория и техника ускорения частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79979 |
citation_txt |
The C-80 cyclotron system. Current status / O.L. Veresov, Yu.N. Gavrish, A.V. Galchuck, S.V. Grigorenko, V.I. Grigoriev, L.E. Korolev, A.N. Kuzhlev, V.G. Mudrolyubov, A.P. Strokach, S.S. Tsygankov, S.A. Artamonov, E.M. Ivanov, G.A. Ryabov // Вопросы атомной науки и техники. — 2014. — № 3. — С. 3-7. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT veresovol thec80cyclotronsystemcurrentstatus AT gavrishyun thec80cyclotronsystemcurrentstatus AT galchuckav thec80cyclotronsystemcurrentstatus AT grigorenkosv thec80cyclotronsystemcurrentstatus AT grigorievvi thec80cyclotronsystemcurrentstatus AT korolevle thec80cyclotronsystemcurrentstatus AT kuzhlevan thec80cyclotronsystemcurrentstatus AT mudrolyubovvg thec80cyclotronsystemcurrentstatus AT strokachap thec80cyclotronsystemcurrentstatus AT tsygankovss thec80cyclotronsystemcurrentstatus AT artamonovsa thec80cyclotronsystemcurrentstatus AT ivanovem thec80cyclotronsystemcurrentstatus AT ryabovga thec80cyclotronsystemcurrentstatus AT veresovol c80cyclotronsystemcurrentstatus AT gavrishyun c80cyclotronsystemcurrentstatus AT galchuckav c80cyclotronsystemcurrentstatus AT grigorenkosv c80cyclotronsystemcurrentstatus AT grigorievvi c80cyclotronsystemcurrentstatus AT korolevle c80cyclotronsystemcurrentstatus AT kuzhlevan c80cyclotronsystemcurrentstatus AT mudrolyubovvg c80cyclotronsystemcurrentstatus AT strokachap c80cyclotronsystemcurrentstatus AT tsygankovss c80cyclotronsystemcurrentstatus AT artamonovsa c80cyclotronsystemcurrentstatus AT ivanovem c80cyclotronsystemcurrentstatus AT ryabovga c80cyclotronsystemcurrentstatus |
first_indexed |
2025-07-06T03:53:22Z |
last_indexed |
2025-07-06T03:53:22Z |
_version_ |
1836868176549249024 |
fulltext |
ISSN 1562-6016. ВАНТ. 2014. №3(91) 3
THEORY AND TECHNOLOGY OF PARTICLE ACCELERATION
THE C-80 CYCLOTRON SYSTEM. CURRENT STATUS
O.L. Veresov1, Yu.N. Gavrish1, A.V. Galchuck1, S.V. Grigorenko1, V.I. Grigoriev1,
L.E. Korolev1, A.N. Kuzhlev1, V.G. Mudrolyubov1, A.P. Strokach1, S.S. Tsygankov1,
S.A. Artamonov2, E.M. Ivanov2, G.A. Ryabov2
1FSUE “D.V. Efremov Scientific Research Institute of Electrophysical Apparatus”,
Saint-Petersburg, Russia;
2the B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI),
Gatchina, Leningrad district, Russia
E-mail: npkluts@niiefa.spb.su
The C-80 cyclotron system is intended to produce proton beams with an energy ranging from 40 up to 80 MeV
and current up to 200 µA. The beams with the aforementioned parameters will be used for commercial production of
a wide assortment of isotopes for medicine including radiation generators. In addition, creation of a special beamline
to form homogeneous proton beams of ultra-low intensity (107…109) will allow the proton therapy of eye diseases
and superficial oncological diseases as well as tests of radioelectronic components for radiation resistance to be
performed. The equipment of the cyclotron and the first section of the beam transport system has been
manufactured, tested at test facilities in the Efremov Institute, installed in the PNPI and made ready for acceptance
tests.
PACS: 29.20.dg
Over a number of years, works on designing a cyclo-
tron for the acceleration of Н– ions up to 80 MeV were
carried out in the PNPI and Efremov Institute [1 - 4].
Within the frames of a medical program of the NRC
”Kurchatov Institute” a decision was made to use this
cyclotron as a basis for commercial production of radio-
isotopes to produce promising radiopharmaceuticals and
their generators [5 - 7]. In addition, creation of a special
beamline to form homogeneous proton beams of ultra-
low intensity (107…109) is planned, which will allow
the proton therapy of eye diseases and superficial onco-
logical diseases to be performed as well as tests of radi-
oelectronic components for radiation resistance. Design
parameters of the cyclotron are given in Table.
MAJOR UNIT OF THE CYCLOTRON
The major unit of the cyclotron, the electromagnet,
has been designed using the magnet of the synchrocy-
clotron functioning in the PNPI. The magnet was manu-
factured and assembled in the experimental hall of the
synchrocyclotron. On the one hand, this decision al-
lowed the expenditures to be reduced, and on the other
hand it limited the choice of design solutions. So, engi-
neering and design solutions adopted in this project
mostly depend on these circumstances, in particular:
• overall dimensions of the vacuum chamber and
partly the number and layout of hookup elements are
specified;
• parameters of the electromagnet power supplies are
specified;
• overall dimensions of the resonance system are
practically specified;
• the system of external injection of H--ions is locat-
ed directly under the electromagnet in the basement;
• beams of accelerated protons are extracted through
an output window by stripping on carbon foils of the
stripping device equipped with a mechanism to adjust
radial and angular position of the foil;
• the range of energy variation of protons extracted
from the cyclotron is limited with mutual location of the
stripping device and resonance system.
Characteristics of the C-80 cyclotron
Systems/Parameters Characteristics
Accelerated particles
Extracted particles
Beam energy, variable, MeV
Beam current, µA
Н¯
H+
40…80
200
Electromagnet:
- type
- pole diameter, cm
- mass, t
E-shaped
2050
245
Resonance system:
- operating frequency, MHz
- dee number
- RF voltage amplitude, kV
41.2
2
60
RF-generator power, kW
Ion source
Operating mode
80
external
continuous/pulse
Total power consumption, no
more, kW:
- with the beam on
- in the stand-by mode
500
200
A new system for lifting the upper part of the mag-
net has been designed and manufactured. It consists of 4
pairs of ball bearings and screws equipped with servo-
mechanisms and position sensors. Photo of the electro-
magnet with the lifting system and vacuum chamber is
shown in Fig. 1.
Based on the preliminary magnetic measurements of
the magnetic field topology carried out by specialists of
PNPI, new magnet sectors (Fig. 2), shims and metal
plates have been designed and manufactured.
mailto:npkluts@niiefa.spb.su
ISSN 1562-6016. ВАНТ. 2014. №3(91) 4
Fig. 1. The electromagnet with the lifting system
of the magnet upper part and vacuum chamber
The vacuum chamber is made of stainless steel. Two
openings are made along the central axis of the vacuum
chamber. The lower opening is intended to input the
beam from the external injection system, and the upper
opening serves to house the inflector power leads. The
vacuum chamber sidewall is made with branch pipes to
house tanks of the resonance system and to extract
beams of protons as well as to install two cryopumps,
probes and the stripping device.
Fig. 2. Pole piece with sectors
RESONANCE SYSTEM
The resonance accelerating system (Fig. 3) is located
completely inside the vacuum chamber. The system
consists of two symmetrical quarter-wave resonators.
Fig. 3. The resonance system located in the vacuum
chamber of the electromagnet
The system is equipped with a capacitor for frequen-
cy tuning, an AFT trimmer and RF-probe as well as
aligning devices and coiled pipes for cooling heat-
loaded units. The operating frequency of the accelerat-
ing system RF oscillations is 41.2 MHz. The range for
the frequency tuning with the AFT trimmer is 220 kHz.
The active loss power is about 29 kW in each resonator
at an RF-voltage amplitude of 60 kV.
The cyclotron is equipped with two standard and
three diagnostic probes and a stripping device. The
standard probes are intended to measure the beam cur-
rent at normal cyclotron operation. Diagnostic probes
are used to measure the beam current at commissioning
works and should be replaced for standard probes and
the stripping device when running the cyclotron.
All the probes are equipped with:
- a remote drive for radial travel of probes with an
accuracy of 0.5 mm;
- removal of the beam power of 200…400 W (the
duty cycle is 40…20);
- the probes have similar connection dimensions and
are equipped with similar electrical and water connect-
ors, which provides their interchangeability.
The range of diagnostic probes’ radial travel is from
the minimum position allowed by the design to the max-
imum acceleration radius.
The range of radial travel for standard probes de-
pends on the minimum and maximum energies of the
extracted ion beam (40 and 80 MeV).
The stripping device is equipped with a mechanism
to adjust radial and angular position of the carbon foil to
provide a required range of final ion energies. The head
of the stripping device is made as a “three-fingered fan”,
onto which three thin carbon foils are fixed. Remote
rotation of the head is provided, which allows any of
these 3 foils to be placed under the beam.
RF POWER SUPPLY SYSTEM
The RF power supply system consists of a stabiliza-
tion and control module (designed in NIIEFA) and an
RF-power amplifier (the «Coaxial Power System» firm,
Great Britain).
The stabilization and control module of the RF-
power supply system is intended for:
- generation of the main frequency of 41.2 MHz;
- manipulation of the acceleration voltage and its
synchronization with the operation of the rest systems of
the cyclotron;
-measuring and stabilization of the dee acceleration
voltage amplitude;
- tuning and stabilization of the resonance system
natural frequency;
- automatic tuning of the resonance system frequen-
cy to the supply voltage frequency.
The RF-power amplifier shall ensure an output pow-
er of 80 kW at a frequency of 41.2 MHz. The amplifier
with power supply units is located in two cabinets
(Fig. 4) installed in the experimental hall basement. The
RF-power is transmitted to the resonance system via a
flexible coaxial feeder.
ISSN 1562-6016. ВАНТ. 2014. №3(91) 5
Fig. 4. The RF-power amplifier
POWER SUPPLY SYSTEM
The power supply system of the cyclotron (Fig. 5)
serves to generate and distribute electric power to the
following main equipment of the cyclotron system:
• External injection system;
• Main electromagnet;
• System for the beam extraction and transport;
• RF power supply system;
• Vacuum system of the cyclotron;
• Water cooling system;
• Automatic control system.
Fig. 5. Power supply system for magnets and lenses
Electric power to the external injection system is
supplied from power supplies of the Lambda and
Spellman firms placed inside two cabinets. The power
supply system produced by the Bruker firm, France
serves to power the main electromagnet, magnets and
lenses of the 1st section of the beam transport system.
EXTERNAL INJECTION SYSTEM
The external injection system serves for generation,
shaping and transport of the H- ion beam from an exter-
nal source into the cyclotron through an axial opening
made in the pole. The system is located under the elec-
tromagnet.
The system has been designed taking into account an
experience gained in creation of similar systems for
modern cyclotrons designed and manufactured in
Efremov Institute, namely СС – 18/9 and MСС – 30/15.
The system consists of: a plasma ion source with elec-
trostatic optics, beamline with two focusing lenses and
two correcting electromagnets, inflector, which is nec-
essary to bend the beam from the axial transport channel
to the median plane of the cyclotron and diagnostics,
which allow the beam characteristics to be measured.
Fig. 6 shows the external injection system; Fig. 7 gives
the beam trace on quartz glass (a measuring device is
mounted instead of the inflector).
Fig. 6. The external injection system mounted
on the cyclotron
Fig. 7. Beam trace on quartz glass
To produce high vacuum in the cyclotron chamber,
two Velco 322 cryopumps of the HSR firm, Liechten-
stein, are used. Turbomolecular pumps (Edwards, Great
Britain) are used in the external injection and beam
transport systems.
The water cooling system is intended to remove the
heat, totally of about 500 kW, from the heat-loaded
components and units of the cyclotron and stabilize the
heat carrier temperature at the input to these compo-
nents accurate within 1…2°C. A double-circuit cooling
system is used.
The heat carrier (distilled water) circulates in the in-
ner circuit and cools heat-loaded components of the
cyclotron; the coolant (process water) is used in the out-
er circuit. The heat removed by the heat carrier from
heat-loaded components is transferred to the coolant in a
plate-type heat-exchanger.
To extract the heat released in the process of the cy-
clotron operation into the atmosphere, the outer circuit
of the water cooling system is connected to the circulat-
ing water cooling system of the building. At the atmos-
ISSN 1562-6016. ВАНТ. 2014. №3(91) 6
pheric air temperature of 25ºС, the heat is removed
through a water-water chiller.
The heat carrier is supplied to heat-loaded elements
of the cyclotron through water distribution boards.
AUTOMATIC CONTROL SYSTEM
A distributed automatic control system is used. It
consists of Mitsubishi and Fastwel IO controllers and
computers, each being responsible for the control of one
or several sub-systems of the cyclotron. The main unit
of the control system is an industrial (host) computer,
which inquires slave controllers and transmits the in-
formation acquired to computers of the operator’s work-
station; receives commands from the operator’s work-
station and performs their arbitration and distribution.
Data exchange is realized via network interfaces of
three types: the Ethernet, an upper level network, the
ProfiBus DP and RS-485, low-level networks. The
Ethernet networks the host Mitsubishi controller, host
computer, computers of the operator’s workstation,
computer of the beam current measuring system and an
industrial computer, which controls the RF system. The
ProfiBus DP links the host controller, controllers of
devices of the cyclotron and beam-forming system, vac-
uum system, power switchboard, power supply cabinets
of the external injection system, water cooling system as
well as control units of the power supply system for
magnets and lenses.
The RS-485 networks the host computer, vacuum
measuring units and controllers of turbomolecular
pumps as well as the computer of the beam current
measuring system and drivers of step motors of the de-
vices for measuring the beam current density. In addi-
tion, the RS-485 links the controller of the cyclotron and
beam-forming system devices with drivers of the step
motors of probes and stripping device.
BEAM TRANSPORT SYSTEM
The beam transport system of the C-80 is intended
for transport of the extracted proton beam to interaction
chambers, the magnetic separator, units for radioiso-
topes’ production and research of radiation resistance of
radioelectronic components, etc. To date, the equipment
for the 1st section of the system (Fig. 8) has been de-
signed and manufactured, namely, the matching magnet,
correcting electromagnet, quadrupole lens doublet and
diagnostics comprising the Faraday cup and beam pro-
file monitor.
Fig. 8. The 1st section of the beam transport system
The equipment for the 2nd section of the system,
which serves to transport the proton beam to target de-
vices for production of radionuclides, has been designed
and manufactured (Fig. 9). In this section, a switching
magnet is installed, which directs the beam to several
beamlines.
The first beamline will be equipped with an innova-
tion target system cooperatively designed by specialists
of Efremov Institute and PNPI for production of promis-
ing radioisotopes for medicine and industry. The second
beamline will be equipped with standard equipment for
production of Sr-Rb generators. In the third beamline
will be installed the magnetic separator also coopera-
tively designed by specialists of Efremov Institute and
PNPI for production of radioisotopes of high purity.
CONCLUSIONS
To date, installation of the equipment of the main
cyclotron systems and the first section of the beam
transport system has been finished. Commissioning
works are underway. Physical start-up of the cyclotron
and obtaining a proton beam on the diagnostics of the
ISSN 1562-6016. ВАНТ. 2014. №3(91) 7
first section of the beam transport system are planned to
have been realized by the end of 2013.
Fig. 9. The 2nd section of the system for the proton
beam transport to remote targets for radionuclides’
production
REFERENCES
1. N.K. Abrosimov, S.A. Artamonov, P.V. Bogdanov,
et al. // Proc. of XIII Intern. Cyclotron Conf., Van-
couver, Canada, July 1992, p. 58-62.
2. N.K. Abrosimov et al. // Proc. of ХIII Conf. on Accel-
erators, Dubna. 1993, v. 2, p. 205.
3. N.K. Abrosimov et al. // Proc. of ХIV Conf. on Accel-
erators, Protvino. 1994, v. 4, p. 5.
4. N.K. Abrosimov et al. // Proc. of V Intern. Cyclotron
Conf., Caen, France, June 1998, p. 58.
5. P.V. Bogdanov, Yu.N. Gavrish, E.M. Ivanov, et al.
Major Technical Characteristics of the C-80 Cycko-
tron System // Problems of Atomic Science and
Technology. Series «Nuclear-Physical Research»
(58). 2012, № 3(79), p. 10-14.
6. А.А. Vorobiev, E.M. Ivanov, А.G Кrivshich, et al.
Center of proton Therapy of the B.P. Konstantinov
Petersburg Nuclear Physics Institute // Problems of
Atomic Science and Technology. Series «Nuclear-
Physical Research» (59). 2012, №4(80), p. 146-150.
7. P.V. Bogdanov, I.N. Vasilchenko, Yu.N. Gavrish, et
al. The C-80 Cyclotron System. Technical Charac-
teristics, Current Status, Progress and Prospects.
coatings // XXIII Russian Particle Accelerator Conf.
(RuPAC-2012), Saint-Petersburg, Russia, 2012,
http://accelconf.web.cern.ch/accelconf/, RuPAC-
2012, Proc. Volume, p.106-108.
Article received 04.10.2013
СТАТУС РАБОТ НА ЦИКЛОТРОННОМ КОМПЛЕКСЕ Ц-80
О.Л. Вересов, Ю.Н. Гавриш, А.В. Галчук, С.В. Григоренко, В.И. Григорьев, Л.Е. Королев, А.Н. Кужлев,
В.Г. Мудролюбов, А.П. Строкач, С.С. Цыганков, С.А. Артамонов, Е.М. Иванов, Г.А. Рябов
Циклотронный комплекс Ц-80 предназначен для получения протонных пучков с энергией 40…80 МэВ и
током до 200 мкА. Пучки с такими параметрами будут использоваться для производства широкого спектра
изотопов медицинского назначения, в том числе генераторов излучения, в коммерческих масштабах. Кроме
того, создание специального тракта формирования гомогенных пучков протонов ультрамалой интенсивно-
сти (107…109) позволит осуществлять протонную лучевую терапию глаза и поверхностных форм онкологи-
ческих заболеваний, а также проводить испытания радиоэлектронных изделий на радиационную стойкость.
Оборудование циклотрона и первого участка системы транспортировки изготовлено и испытано на стендах
НИИЭФА им. Д.В. Ефремова, смонтировано в ПИЯФ им. Б.П. Константинова и подготовлено для проведе-
ния приемосдаточных испытаний.
СТАТУС РОБІТ НА ЦИКЛОТРОННОМУ КОМПЛЕКСІ Ц-80
О.Л. Вересов, Ю.М. Гавриш, А.В. Галчук, С.В. Григоренко, В.І. Григорьєв, Л.Є. Корольов, А.М. Кужлєв,
В.Г. Мудролюбов, А.П. Строкач, С.С. Циганков, С.А. Артамонов, Є.М. Іванов, Г.А. Рябов
Циклотронний комплекс Ц-80 призначений для отримання протонних пучків з енергією 40...80 МеВ і
струмом до 200 мкА. Пучки з такими параметрами використовуватимуться для виробництва широкого спек-
тра ізотопів медичного призначення, у тому числі генераторів випромінювання, в комерційних масштабах.
Крім того, створення спеціального тракту формування гомогенних пучків протонів ультрамалої інтенсивно-
сті (107…109) дозволить здійснювати протонну променеву терапію ока і поверхневих форм онкологічних
захворювань, а також проводити випробування радіоелектронних виробів на радіаційну стійкість. Устатку-
вання циклотрона і першої ділянки системи транспортування виготовлене та випробуване на стендах
НДІЕФА ім. Д.В. Єфремова, змонтовано в ПІЯФ ім. Б.П. Константинова і підготовлено для проведення
приймальноздавальних випробувань.
The C-80 Cyclotron System. Current Status
СТАТУС РАБОТ НА ЦИКЛОТРОННОМ КОМПЛЕКСЕ Ц-80
|