On spiral superfluidity in the Fermi-liquid model

In this work we propose a model of description of a superfluid Fermi liquid with a spiral ordering by spins. The method of description is similar to that of description of spiral magnetics. Self-consistency equations for the order parameter are obtained. The transition temperature and order paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
Hauptverfasser: Shul’ga, S.N., Yatsenko, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/80048
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On spiral superfluidity in the Fermi-liquid model / S.N. Shul’ga, A.A. Yatsenko // Вопросы атомной науки и техники. — 2001. — № 6. — С. 348-350. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80048
record_format dspace
spelling irk-123456789-800482015-04-10T03:02:13Z On spiral superfluidity in the Fermi-liquid model Shul’ga, S.N. Yatsenko, A.A. Quantum fluids In this work we propose a model of description of a superfluid Fermi liquid with a spiral ordering by spins. The method of description is similar to that of description of spiral magnetics. Self-consistency equations for the order parameter are obtained. The transition temperature and order parameter in case of interaction similar to the Skyrme interaction are numerically calculated. The transition temperature and the order parameter, are proved to reach their maximal value under spirality distinct from zero. 2001 Article On spiral superfluidity in the Fermi-liquid model / S.N. Shul’ga, A.A. Yatsenko // Вопросы атомной науки и техники. — 2001. — № 6. — С. 348-350. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 67.57. z, 71.10.Ay http://dspace.nbuv.gov.ua/handle/123456789/80048 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Quantum fluids
Quantum fluids
spellingShingle Quantum fluids
Quantum fluids
Shul’ga, S.N.
Yatsenko, A.A.
On spiral superfluidity in the Fermi-liquid model
Вопросы атомной науки и техники
description In this work we propose a model of description of a superfluid Fermi liquid with a spiral ordering by spins. The method of description is similar to that of description of spiral magnetics. Self-consistency equations for the order parameter are obtained. The transition temperature and order parameter in case of interaction similar to the Skyrme interaction are numerically calculated. The transition temperature and the order parameter, are proved to reach their maximal value under spirality distinct from zero.
format Article
author Shul’ga, S.N.
Yatsenko, A.A.
author_facet Shul’ga, S.N.
Yatsenko, A.A.
author_sort Shul’ga, S.N.
title On spiral superfluidity in the Fermi-liquid model
title_short On spiral superfluidity in the Fermi-liquid model
title_full On spiral superfluidity in the Fermi-liquid model
title_fullStr On spiral superfluidity in the Fermi-liquid model
title_full_unstemmed On spiral superfluidity in the Fermi-liquid model
title_sort on spiral superfluidity in the fermi-liquid model
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
topic_facet Quantum fluids
url http://dspace.nbuv.gov.ua/handle/123456789/80048
citation_txt On spiral superfluidity in the Fermi-liquid model / S.N. Shul’ga, A.A. Yatsenko // Вопросы атомной науки и техники. — 2001. — № 6. — С. 348-350. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT shulgasn onspiralsuperfluidityinthefermiliquidmodel
AT yatsenkoaa onspiralsuperfluidityinthefermiliquidmodel
first_indexed 2025-07-06T03:59:07Z
last_indexed 2025-07-06T03:59:07Z
_version_ 1836868538781925376
fulltext ON SPIRAL SUPERFLUIDITY IN THE FERMI-LIQUID MODEL S.N. Shul’ga, A.A. Yatsenko1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 1e-mail: yats@kipt.kharkov.ua In this work we propose a model of description of a superfluid Fermi liquid with a spiral ordering by spins. The method of description is similar to that of description of spiral magnetics. Self-consistency equations for the order parameter are obtained. The transition temperature and order parameter in case of interaction similar to the Skyrme interaction are numerically calculated. The transition temperature and the order parameter, are proved to reach their maximal value under spirality distinct from zero. PACS: 67.57. z, 71.10.Ay The term “spiral ordering” means that the state of a system remains invariant after an arbitrary spatial shift on a vector a and a simultaneous rotation of spins on an angle aq, with q the spirality vector, i. e. the state of the system is invariant relatively the unitary transformation )ˆˆ(ˆ 3exp σqpa −= iV : (1) fVfV ˆˆˆˆ =+ , (2) where         −= + f1g gf f ~ˆ , (3) 3σˆ – Pauli matrix and p̂ – operator of momentum, generalized on a superfluid Fermi liquid:     − = 3 3 3 0 0 σ σ σˆ     − = p p p 0 0ˆ . (4) Here f and g stand for normal and anomal distribution functions of quasi-particles in the superfluid Fermi liquid. Such states of the superfluid Fermi liquid are analogous to the spiral ordering of magnetics [1] and can be presumably realized in liquid 3He or in neutron stars. Generally, such a state must be spatially unhomo- geneous. It is a superposition of singlet and triplet spin states of the superfluid Fermi liquid. In construction of the theory of spiral ordering for the superfluid Fermi liquid we followed the works [2,3], where the distribution function of the normal and superfluid components is presented in the form of defined above supermatrix f̂ ; the quasi-particle energy ε̂ and the operators of physical values a read as     −∆ ∆ = + ε ε ε ~ˆ ,       − = a a a ~ˆ 0 0 . (5) The unitary transformation += UfUf ˆˆˆˆ q , (6) where ( )3exp σxq ˆˆ iU −= , preserves the structure of the supermatrix qf̂ analogical to the matrix f̂ :         −= + q qq q q f1g gf f ~ˆ (7) and transfers the system into a homogeneous state: 0][ =p,q ˆf̂ . (8) Normal and anomalous distribution functions fq and gq that define the supermatrix qf̂ in (7) are expressed through f and g in the following way: 33 σσ qxqx q ii feef −= , (9) 33 σσ xqqx q ~ii geeg −−= . (10) The general structure of the “homogeneous” anomalous distribution function gq and the order parameters Δq for case of one kind of fermions is: ( ) 20 )()()( σσ pppq ggg += , (11) ( ) 20 )(Δ)(Δ)(Δ σσ  pppq += . (12) This describes a superposition of singlet and triplet states of the system. On the other hand, the quantity gq(p) can be expanded into components g|| and g⊥ that is convenient for further calculations: ⊥+= ggg ||q , (13) where ( ) 2330 σσggg +=|| , (14) and ( ) 22211 σσσ ggg +=⊥ . (15) The order parameter Δq(p) can be expanded in the same way: ⊥∆+∆=∆ ||q , (16) where 92 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 6, p. 348-350. ( ) 2330 σσ∆+∆=∆ || , (17) and ( ) 22211 σσσ ∆+∆=∆ ⊥ . (18) By means of these matrices, it will be easy to reconstruct the unhomogeneous distribution functions f and g, the order parameter Δ and to calculate the spatially unhomogeneous characteristics of the system. In fact, the matrix elements of the distribution functions f, g, fq and gq between the impulse states p and p′ have form: ( )qpp qpqpp )( 2 1)( 2 1 3 1 1 3 κηδ κ σηση κ η −−′−× ×+−+= ∑ ±= ±= ′ ff , (19) ( )qpp qpqpp )( 2 1)( 2 1 3 1 1 3 κηδ κ σηση κ η +−′+× ×+−+= ∑ ±= ±= ′ gg (20) The matrix elements of the order parameter Δ12 and the energy ε12 are of analogous form. They are defined through “homogeneous” order parameters Δq(p)12 and εq(p)12, which are diagonal matriсes in the impulse space. The energy of the system can be represented in the following form: ( ) ( ) ( )gEfEfE int0 +=ˆ . (21) In this work we do not take into account influence of the normal amplitudes of interaction on the superfluid properties. The energy E0( f) of the free Fermi liquid quasi- particles possesses the following form: ( ) ( )∑= p ppp ftrfE ε0 , (22) where ( ) m22pp =ε . Note, that the energy εpp' (p) and εq(p) have diagonal form in the impulse space: ( ) ( ) ( )pppppp ′−=′ δεε . (23) Then ( ) ( ) ( ) ( )pp qp pq 330 2 3 2 εσε σ ε += + = m . (24) The term ( )p33εσ in the energy εq (p) is not equal to zero and substantially influences the process of diagonalization of the distribution function ( )pqf̂ . We choose the term of (21) that is responsible for the superfluidity in the form which is quadratic in the distribution function: ( ) ( )∑ += 1234 3421int 1234 2 1 ggvgE . (25) We choose the interaction between the Fermi liquid quasi-particles being translationally invariant and invariant under rotations in the spin space: ( ) ( ) ( ) =′+ +′= 24131 2413012344321 σσ δδ kk kkpppp , , v vv (26) 1234 P)(u)(u 124130 σδδ kkkk ′+′= ,, , where ( ) 2241324131234 σσδδσ  +=P (27) and . ,, 4321 4321 22 pppp ppkppk +=+ −=′−= (28) We suppose that the interaction between quasi- particles does not depend on the total momentum of the interacting particles. As a model of interaction we consider the effective Skyrme force that depends on angles between momenta of the interacting quasi- particles and quadratically – on absolute values of their momenta. Under such a choice of interaction one can say formally that one examines the proton-neutron pairing in a symmetric nuclear matter, unless the interaction is considered as an example of enough simple force between quasi-particles. As is known from the works [2,3], the order parameter Δ12 and anomalous distribution function are connected by the following equation: ( )∑=∆ 43 3412 1234 , gv . (29) By expressing g through Δ, one can obtain a self- consistency equation for the order parameter. In the case of spiral ordering the order parameter Δpp' and the anomalous distribution function gpp' express through Δq (p) and gq (p) accordingly, and the “homogeneous” normal distribution function gq (p) was obtained in the work [4] as a function of the singlet and triplet order parameters 0∆ and ∆  . For the order parameter (Δ0± Δ3) we have the following equation: ( ))()( )(1)()( 2320 211310 2 pp qpqppp p gg V ± ×±±Φ=∆±∆ ∑ , , (30) where ( ) ( ) ( ) ( )pppppppp ′−′−′=′Φ ,-2,,, 110 vvv , (31) ( ) ( ) ( ) ( ) T E th E gg 22 30 30 ± ± ∆±∆−=± || || pppp , (32) 93 ( ) ( ) ( ) 2 30 22 2 ppqp ∆±∆+        −+=± µ m E|| . (33) For the order parameter Δ2 ± Δ1 we have the equation: ( ) , , )()( )(1)()( 2122 211112 2 pp pppp p igg V i ±× ×Ψ=∆±∆ ∑ (34) where ( ) ( ) ( )pppppp ′+′=′Ψ ,,, 10 vv , (35) ( ) ( ) ( ) ( ) T Eth E iigg 22 12 12 ± ⊥ ± ⊥ ∆±∆−=± pppp , (36) ( ) ( ) 2 12 222 2 ppqp ∆±∆+        −+=± ⊥ i m E µ . (37) Equations (30, 34) describe two particular cases. For description of general spiral ordering of superfluid Fermi liquid we have to obtain a system of 4 nonlinear integral self-consistency equations for the singlet (Δ0) and triplet ( ∆  ) order parameters. Nevertheless, the true spirality is possible only in the case when all 4 components Δj, where j=0,….3 do not vanish. Then the systems of equations are closely coupled between them- selves. However, in the present work we do not investi- gate this case. It is easy to see that the spirality parameter q defines directly the equations for Δ1 and Δ2 only, so we will examine this unhomogeneous case. Note that equation (34) does not depend on the sign “±”, hence Δ1=0. 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,000 0,005 0,010 0,015 0,020 Tc(q) δ (q) q Fig. 1 The equation (30) for Δ2 has been numerically solved for the Skyrme SKP force. For this force we have ( ) ( ) ( ) ( ) ., , 22 2211001 22 2100 u ,u pppppp pppppp ′++′+=′ ′++′+=′ axaxax aaa (38) The constants ai and xi (i=0,….,3) are defined by parametrisation of the potential. Under such a choice of potential we should seek for the order parameter in the form Δ2(p)=δ2 p z, where z is the cosine of angle between the vectors p and q. The order parameter Δ2 has been calculated at T = 0 as a function of the spirality vector q and is presented on the Fig.1. At the same figure we present the transition temperature versus q. At q ~ 0,75 the superfluidity disappears (δ2=0, Tc=0). 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,00828 0,00829 0,00830 0,00831 0,00832 q Tc Fig. 2 The transition temperature (and δ2 as well) reaches its maximal value at q~0,1. It means that the most stable state should be under q distinct from zero, unless the maximum of Tc is very tiny. Similarly behaves the order parameter δ2 at T = 0. The area of extremum of the transition temperature is shown on the Fig.2. Whether the appearance of the extermum is model-dependent, remains an open question. REFERENCES 1. M.Yu. Kovalevsky, S.V. Peletminsky, A.A. Rozhkov. Green functions of spiral magnetics in the hydrodynamical and quasi-particle approximations // TMF. 1988, v. 75, №1, p. 86-100 (in Russian). 2. V.V. Krasilnikov, S.V. Peletminskij, A.A. Yatsenko. On the theory of a superfluid Fermi liquid // Physica A. 1990, v. 162, p. 513-541. 3. A.I. Akhiezer, V.V. Krasilnikov, S.V. Peletminskii, A.A. Yatsenko. Research on superfluidity and superconductivity on the basis of the Fermi liquid concept // Physics Reports. 1994, v. 245, №1,2, p. 1- 110. 4. A.I. Akhiezer, A.A. Isaev, S.V. Peletminsky, A.A. Yatsenko. To the theory of the singlet-triplet pairing of fermions // TMF. 1998, v. 115, №3, p. 459-476 (in Russian). 94 S.N. Shul’ga, A.A. Yatsenko1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 1e-mail: yats@kipt.kharkov.ua REFERENcES 1.M.Yu. Kovalevsky, S.V. Peletminsky, A.A. Rozhkov. Green functions of spiral magnetics in the hydrodynamical and quasi-particle approximations // TMF. 1988, v. 75, №1, p. 86-100 (in Russian).