On equilibrium states of superfluid with d-wave pairing

The equilibrium states of quantum fluid with d-pairing classification is carried out on the basis of the quasiaverages concept. It is shown, that the set of such an equilibrium states can be classified in the terms of the orbital momentum quantum number, relevant to the projection of the orbital mom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Ivashin, A.P., Kovalevsky, M.Y., Chekanova, N.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2002
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/80111
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On equilibrium states of superfluid with d-wave pairing / A.P. Ivashin, M.Y. Kovalevsky, N.N. Chekanova // Вопросы атомной науки и техники. — 2002. — № 2. — С. 40-42. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80111
record_format dspace
spelling irk-123456789-801112015-04-12T03:02:08Z On equilibrium states of superfluid with d-wave pairing Ivashin, A.P. Kovalevsky, M.Y. Chekanova, N.N. Nuclear reactions The equilibrium states of quantum fluid with d-pairing classification is carried out on the basis of the quasiaverages concept. It is shown, that the set of such an equilibrium states can be classified in the terms of the orbital momentum quantum number, relevant to the projection of the orbital momentum of the superconducting electron pair on an anisotropy direction. The explicit expression of three admissible unbroken symmetry generators and relevant order parameter equilibrium values are found. 2002 Article On equilibrium states of superfluid with d-wave pairing / A.P. Ivashin, M.Y. Kovalevsky, N.N. Chekanova // Вопросы атомной науки и техники. — 2002. — № 2. — С. 40-42. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 67.57.-z, 05.30. Ch http://dspace.nbuv.gov.ua/handle/123456789/80111 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Nuclear reactions
Nuclear reactions
spellingShingle Nuclear reactions
Nuclear reactions
Ivashin, A.P.
Kovalevsky, M.Y.
Chekanova, N.N.
On equilibrium states of superfluid with d-wave pairing
Вопросы атомной науки и техники
description The equilibrium states of quantum fluid with d-pairing classification is carried out on the basis of the quasiaverages concept. It is shown, that the set of such an equilibrium states can be classified in the terms of the orbital momentum quantum number, relevant to the projection of the orbital momentum of the superconducting electron pair on an anisotropy direction. The explicit expression of three admissible unbroken symmetry generators and relevant order parameter equilibrium values are found.
format Article
author Ivashin, A.P.
Kovalevsky, M.Y.
Chekanova, N.N.
author_facet Ivashin, A.P.
Kovalevsky, M.Y.
Chekanova, N.N.
author_sort Ivashin, A.P.
title On equilibrium states of superfluid with d-wave pairing
title_short On equilibrium states of superfluid with d-wave pairing
title_full On equilibrium states of superfluid with d-wave pairing
title_fullStr On equilibrium states of superfluid with d-wave pairing
title_full_unstemmed On equilibrium states of superfluid with d-wave pairing
title_sort on equilibrium states of superfluid with d-wave pairing
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2002
topic_facet Nuclear reactions
url http://dspace.nbuv.gov.ua/handle/123456789/80111
citation_txt On equilibrium states of superfluid with d-wave pairing / A.P. Ivashin, M.Y. Kovalevsky, N.N. Chekanova // Вопросы атомной науки и техники. — 2002. — № 2. — С. 40-42. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ivashinap onequilibriumstatesofsuperfluidwithdwavepairing
AT kovalevskymy onequilibriumstatesofsuperfluidwithdwavepairing
AT chekanovann onequilibriumstatesofsuperfluidwithdwavepairing
first_indexed 2025-07-06T04:02:05Z
last_indexed 2025-07-06T04:02:05Z
_version_ 1836868725071937536
fulltext ON EQUILIBRIUM STATES OF SUPERFLUID WITH d-WAVE PAIRING A.P. Ivashin, M.Y. Kovalevsky, N.N. Chekanova National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail: ivashin@kipt.kharkov.ua The equilibrium states of quantum fluid with d-pairing classification is carried out on the basis of the quasiaverages concept. It is shown, that the set of such an equilibrium states can be classified in the terms of the orbital momentum quantum number, relevant to the projection of the orbital momentum of the superconducting electron pair on an anisotropy direction. The explicit expression of three admissible unbroken symmetry generators and relevant order parameter equilibrium values are found. PACS: 67.57.-z, 05.30. Ch INTRODUCTION Classification of condensed media equilibrium states which, using the phenomenological Ginzburg-Landau approach, requires knowledge of a free energy as functions of the order parameter and essentially depends on an considered model aspect. Other group-theoretic approach is based on the unbroken symmetry representation of an equilibrium degenerated state as on the subgroup of a normal phase symmetry. Corresponding transformational properties of an order parameter at the transformations of Hamiltonian symmetry are essential in this approach. This review is free from any model suppositions about a free energy aspect. The classification of homogeneous states within the framework of both indicated approaches was carried out for superfluid 3Не [1-3], which is featured by a tensor order parameter. The problem of classification of possible nonuniform superfluid equilibrium states of this quantum fluid is researched in [4]. Other important example of the degenerated condensed matter is the superfluid in a state of d-pairing, which also is featured by the tensor order parameter [5]. The possible states classification for this pairing is carried out on the basis of the phenomenological approach in [5-6]. The microscopic approach for homogeneous states classification of an equilibrium which is based on the quasiaverages concept [7-8,4] was proposed in this work. The admissible symmetry properties of a quantum fluid equilibrium state and relevant order parameter structures are at nonzero values of an order parameter from the unbroken symmetry requirements. THE BASIC EQUATIONS The statistical physics of condensed matter with the spontaneously broken symmetry theoretical base is the concept of quasiaverages by N.N. Bogoliubov [7], which extends Gibbs statistical operator on degenerated condensed states. According to [7], the quasiaverages of a physical value in a state of a statistical equilibrium with the broken symmetry is determined by the formula ( ) ),(ˆˆlim 0 limˆ xawSp V xa νν ∞→→ ≡ (1) )ˆˆexp(ˆ FaaYw νγνν −−Ω≡ . (2) Here −aγˆ additive integrals of motion ( H ˆ − Hamiltonian, kPˆ − impulse operator, N̂ − particle number operator, αŜ − spin operator), ),4,,0( α YYkYYaY ≡ - thermodynamic forces, relevant to them. For convenience of the further account we suppose, that in a laboratory co-ordinates in an equilibrium state there are no macroscopic fluxes, i.e. 0=kY and the external magnetic field is equal to zero 0=αY . The thermodynamic potential νΩ is defined from a normalization conditions 1ˆ =wSp . The operator F̂ has the considered phase symmetry of a condensed media and represents as linear functional of the order parameter operator ( )..)(ˆ)(3ˆ chxikxikfxdF +∆∫= . (3) Here )(xikf - some function of coordinates, conjugate order parameter operator, which sets its equilibrium values in sense quasiaverages )(ˆ)( xikxik ∆=∆ . The functions structure )(xikf is determined by properties of the quantum fluid researched states symmetry. It allows within the microscopic theory framework to define the additional thermodynamic parameters into Gibbs statistical operator. We define the order 40 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2002, № 2. Series: Nuclear Physics Investigations (40), p. 40-42. parameter operator of d-pairing ( )xik∆̂ in the terms of the operators of creation and annihilation of Fermi - particle in a point x : )x(ˆj)x(ˆjik )x(ˆi)x(ˆk)x(ˆk)x(ˆi)x(ikˆ ψ∇σψ∇δ− ψ∇σψ∇+ψ∇σψ∇≡∆ 23 2 22 (4), where 2σ - Pauli matrix. We define the operators of number of particles N̂ , impulse kPˆ , spin αŜ and orbital moment k ˆL ( )xnxdN ˆˆ 3∫= , ( )xˆxdˆ ii π∫= 3P , ( )xŝxdˆ i 3S ∫=i , ( )xl̂xdˆ ii 3∫=L , (5) where the relevant densities of motion integrals ( )xn̂ , ( )xiπ̂ , ( )xsiˆ , ( )xlî , in the terms of the operators of creation and annihilation ( ) ( )xˆ,xˆ ψψ + ,are ( ) ( ) ( )xˆxˆxn̂ σ + σ ψψ= , ( ) ( ) ( ) ( ) ( ){ }xˆxˆxˆxˆixˆ iii σ + σσ + σ ψψ∇−ψ∇ψ−=π 2 , (6) ( ) ( ) ( ) ( )xˆsxˆxŝ '' σσ σα + σα ψψ= , ( ) ( )xxxl lkikli πε ˆˆ = . Using definitions (4) - (6) we obtain operator algebra: [ ] ),(ˆ2)(ˆ,ˆ xikxikN ∆−=∆ [ ] ,0)(ˆ,ˆ =∆ xikS α [ ] ),(ˆ)(ˆ,ˆ xiklxikli ∆− ∇=∆P [ ] )x(ikˆjkxlkj )x(jiˆlkj)x(jkˆlij)x(ikˆ,l̂i ∆∇ε− ∆ε−∆ε−=∆L . (7) The mean values of the order parameter )(ˆˆ)ˆ,( xikSpxik ∆=∆ ρρ , ( −ρ̂ the arbitrary statistical operator) have properties ( ) ( )ρρ ˆ,ˆ, xkixik ∆=∆ , ( ) 0ˆ, =∆ ρxii . We have ten independent values in this case. We choose a parameterization of ( )ρ∆ ˆ,xik in the form )ˆ,()ˆ,()ˆ,( ρρρ xikiQxikQxik +≡∆ , ] 3 1 [] 3 1 [ ikkmimBikkninAikQ δδ −+−≡ , (8) +     −+     −≡ ikkmimDikkninCikQ δδ 3 1 3 1 ( ) ( ) ( )imklkmilGilknklinFinkmknimE ++++++ . Here GBA ,..,, - the modules of the order parameter, n , m , l  are the axes of an anisotropy, also represent unitary and mutually perpendicular vectors ,1222 === lmn  0=mn  , 0=ml   , 0=ln  . The condensed matter in a normal equilibrium state is characterized by symmetry properties [ ] 0ˆ,ˆ =kw P , [ ] 0ˆ,ˆ =kw L , [ ] 0ˆ,ˆ =αSw , [ ] 0ˆ,ˆ =Nw . (9) These properties reflect a translational invariance, spatial and spin isotropy, phase invariance of a normal phase equilibrium state of condensed matter. A requirement of a spatial isotropy in (9) and quantum brackets algebra (7) give the equality 0)(ˆˆ =∆ xikwSp , in an aspect of the chosen directions lack in the equilib- rium state. We consider possible equilibrium order parameter structures in the translational-invariant states of a superfluid state equilibrium. The analysis of translational-invariant subgroups of the equilibrium states unbroken symmetry, according to [4] is feasible from relations [ ] 0ˆ,ˆ =Tw , [ ] 0ˆ,ˆ =kw P , (10) where T̂ - the generator of the unbroken symmetry, which represents the linear motion integrals combination NcSbiiaT ˆˆˆ ++≡ αα L , (11) here cbia ,, α - the real parameters. The unitary transformations ( )aTiU ˆexp= form continuous subgroups of the equilibrium state unbroken symmetries ( ) ( ) ( )( )',''' aaaUaUaU = . Agrees (10), (11) we get [ ] ( ) 0ˆˆ,ˆ =∆ x ik TwSp . Therefore, taking into account algebra (7), we get the system of linear and homogeneous equations 0=∆ jl ik jlF , (12) where ( ) ik jljiklillkjkllijl Fica ≡++ δδδεδε 2 . Passing in the formula (12) from double summation to unary, at which the indexes jlik; of summation possess the values :, βα 111 ≡ , ,212 ≡ 933... ≡ we obtain the equation 0=∆ α β αF . (13) The requirements 0det =β αF (it is the condition of existing of a nontrivial system linear and homogeneous equations solution (13) ( ) 0≠∆ x ik ) are fulfilled at с=0, ±a, ±a/2. The three solutions of the equation 0det =β αF are as follows 41 1) 0=c , 2) ac ±= , 3) ac 2 1±= . (14) Hence, the unbroken symmetry generators of the superfluid fluid equilibrium state with d-pairing are [ ] 0ˆ,ˆ =αSw , 0ˆ 2 ˆ,ˆ =    − Nm a aw l i i L . (15) Here lm - quantum number accepting the values 0, 1, 2. Using the second relation (15) and taking into account (8) we obtain the equations, defining the explicit form of the order parameter in equilibrium ( ) 0=−+ uvljuivjjviuj i QmQQ a a εε , (16) ( ) 0=++ uvljuivjjviuj i QmQQ a a εε . SOLUTION OF THE EQUATIONS AND DISCUSSION OF THEM Solving obtained set of equations and using representation (8) we find the order parameter structure in the equilibrium state in this case ( )       −+=∆ uvvuuv nniCA δ 3 1 , (17) here for simplicity the vectors a and n are chosen collinear. The equality in (17) is similar to an order parameter structure of a liquid crystal body with complex amplitude. At 2±=m we obtain the solution ( ){ }vuuvuvvuvuuv mlmlimmnnG ++±=∆ δ2 . (18) For a determination of the solution at the quantum number value 1±=m , the vector a on the indicated co- ordinate is decomposable lmnaa  γβα ++=/ . Here γβα ,, are bound by equality 1222 =++ γβα . From (13) we get the solution { ±−+=∆ uvvuvuuv mmnnA δ2 , [ ]   +++± vuuvvuuv lnlnnmnmi 2 , (19) thus 2/12 −±== γβ , 0=α . To compare the obtained outcomes with results of works [5,6] we normalize the order parameter by a relation 1=∆∆ ∗ kiik . (20) Agrees (17) - (19), (20) we find 2/322 =+ CA , 2/1±=G , 2/1±=A . According to the paper [5] we define mean value jiji kk ∆≡∆ , (21) where the unit vector k  is defined by equality { } { }xyz k,k,kncossin,msinsin,lcosk ≡ϕθϕθθ≡  . (22) For a solution (17) according to (21), (22) we write ( ) ( ) ( )3/121 −+=∆ zkiCA . This solution corresponds the "real" state. The solution (18) in according to (21) (22) gives the equality ( ) ( ) 2/22 yx ikk +=∆ , which coincides with "axial" state of works [5,6]. At last, in a case (19) we obtain ( ) ( ) ( )xyz kkki −++=∆ 23 γβ . (23) Comparing this result with "cyclic" state from papers [5,6], we can’t notice the equivalence of them. They coincide only with α=0 and ζ==0. REFERENCES 1. G. Barton, M. Moore. Superfluids with l≠0. Cooper pairs: parameterization of the Landau free energy // J. Phys. C. 1974, v. 7, p. 2989-3000. 2. H.W. Capel. Group theory and phases of superfluid 3He. Proceedings of the 5 th International Symposium on Selected topics in statistical mechanics, World Scientific, 1990, p. 73- 83. 3. D. Vollhardt, P. Wolfle. The superfluid pha- ses of helium 3. Taylor Francis, 1990, 619 p. 4. M.Y. Kovalevsky, S.V. Peletminsky, N.N. Chekanova. Classification of the equilibrium superfluid states with scalar and tensor order parameters // Low Temperature Physics. 2002, v. 28, № 4, p. 327-337. 5. D. Mermin. d-pairing near the transition temperature // Phys. Rev. 1974, A9, p. 868-870. 6. T.L. Ho, S.S. Yip. Pairing of Fermions with Arbitrary Spin // Phys. Rer. Lett. 1999, v. 82, № 2, p. 247-250. 7. N.N. Bogolyubov. Superfluidity and quasime- ans in problems of statistical mechanics // Proceedings of the Steklov Institute of Mathematics. 1988, Iss. 2, p. 3-45. 8. N.N. Bogolyubov (Jr.), М.Y. Kovalevsky, А.М. Kurbatov, S.V. Peletminsky, А.N. Tarasov. On microscopic theory of superfluid // Uspekhy fizicheskikh nauk. 1989, v. 154, p. 585-620. 42 A.P. Ivashin, M.Y. Kovalevsky, N.N. Chekanova THE BASIC EQUATIONS REFERENCES