Monitoring system for proton beam transport to the irradiation facilitie
A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path and terminal controller connected to the computer. Monitor system allow...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/80278 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Monitoring system for proton beam transport to the irradiation facilitie / V.M. Skorkin, S.V. Akulinichev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 169-171. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-80278 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-802782015-04-15T03:02:33Z Monitoring system for proton beam transport to the irradiation facilitie Skorkin, V.M. Akulinichev, S.V. Применение ускорителей в радиационных технологиях A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path and terminal controller connected to the computer. Monitor system allows to determine the beam losses and to detect instability of the formative elements. Мониторная система в режиме реального времени контролирует прохождение пучка протонов линейного ускорителя до экспериментальных установок по вторичному нейтронному излучению от потерь пучка. Система состоит из детекторов нейтронов в канале транспортировки и терминального контроллера, соединённого с компьютером. Мониторная система позволяет определять потери пучка и контролировать работу формирующих элементов транспортного канала. Моніторна система в режимі реального часу контролює проходження пучка протонів лінійного прискорювача до ек- спериментальних установок за вторинним нейтронним випромінюванням від втрат пучка. Система складається з детек- торів нейтронів у каналі транспортування і термінального контролера, сполученого з комп'ютером. Моніторна система дозволяє визначати втрати пучка і виявляти нестабільність роботи формуючих елементів транспортного каналу. 2014 Article Monitoring system for proton beam transport to the irradiation facilitie / V.M. Skorkin, S.V. Akulinichev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 169-171. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.27.Eg, 87.53.Qc http://dspace.nbuv.gov.ua/handle/123456789/80278 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях |
spellingShingle |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях Skorkin, V.M. Akulinichev, S.V. Monitoring system for proton beam transport to the irradiation facilitie Вопросы атомной науки и техники |
description |
A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a
secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path
and terminal controller connected to the computer. Monitor system allows to determine the beam losses and to detect
instability of the formative elements. |
format |
Article |
author |
Skorkin, V.M. Akulinichev, S.V. |
author_facet |
Skorkin, V.M. Akulinichev, S.V. |
author_sort |
Skorkin, V.M. |
title |
Monitoring system for proton beam transport to the irradiation facilitie |
title_short |
Monitoring system for proton beam transport to the irradiation facilitie |
title_full |
Monitoring system for proton beam transport to the irradiation facilitie |
title_fullStr |
Monitoring system for proton beam transport to the irradiation facilitie |
title_full_unstemmed |
Monitoring system for proton beam transport to the irradiation facilitie |
title_sort |
monitoring system for proton beam transport to the irradiation facilitie |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2014 |
topic_facet |
Применение ускорителей в радиационных технологиях |
url |
http://dspace.nbuv.gov.ua/handle/123456789/80278 |
citation_txt |
Monitoring system for proton beam transport to the irradiation facilitie / V.M. Skorkin, S.V. Akulinichev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 169-171. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT skorkinvm monitoringsystemforprotonbeamtransporttotheirradiationfacilitie AT akulinichevsv monitoringsystemforprotonbeamtransporttotheirradiationfacilitie |
first_indexed |
2025-07-06T04:14:49Z |
last_indexed |
2025-07-06T04:14:49Z |
_version_ |
1836869526822584320 |
fulltext |
ISSN 1562-6016. ВАНТ. 2014. №3(91) 169
MONITORING SYSTEM FOR PROTON BEAM TRANSPORT
TO THE IRRADIATION FACILITIE
V.M. Skorkin, S.V. Akulinichev
Institute for nuclear research of RAS, Moscow, Russia
E-mail: skorkin@inr.ru
A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a
secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path
and terminal controller connected to the computer. Monitor system allows to determine the beam losses and to de-
tect instability of the formative elements.
PACS: 29.27.Eg, 87.53.Qc
INTRODUCTION
When transporting the proton beam of the linear ac-
celerator portion of the beam is lost in the beam line and
the elements forming tube in the transportation chan-
nels. As a result of the beam loss is formed
multicomponent secondary radiation that provides the
background radiation. Nuclear reactions are activated
ion guide elements. High proton beam losses can cause
thermal damage to the vacuum system.
In control systems of the accelerator beam losses
commonly used monitors secondary gamma radiation.
However, the weakening of the gamma-ray structural
materials and background X-rays distort the information
received from the monitors.
At intermediate energies, the main component of the
secondary radiation from the proton beam loss is fast
neutrons [1]. The main part of the secondary radiation
makes up the evaporation neutrons with approximately
isotropic distribution (Fig. 1). The share of cascade neu-
trons of higher energies is less than 10% [2].
Fig. 1. The evaporation neutron yield per lost proton
One lost proton creates approximately one fast
neutron. Fast neutrons in the transport channels can be
registered with help of fast neutron detectors. Forming
elements which create the beam losses are determined
by measuring the induced activity.
The components of the secondary neutron and gamma
radiation were investigated by using the automated
radiation control system (ARCS) of INR Experimental
complex during transportation proton beam to RADEX
irradiation facilities, the pulsed neutron source IN-06 and
the proton therapy facilities [3, 4]. It was found that the
level of background radiation of secondary neutrons is
order of magnitude larger than the secondary gamma
radiation at the proton energy from 70 to 209 MeV.
With the help of UDBN-02R neutron detectors of
ARCS system was investigated intensity of secondary
neutron radiation in the transport channels in depend-
ence on the current beam of protons on target irradia-
tors. In [5] obtained a linear dependence of the radiation
background in the transport path of the beam on the
current value of the proton beam on RADEX.
In the future, such studies have been conducted in
the channels of transportation to other proton beam
irradiation facilities at the beam energy up to 209 MeV
and a beam current up to 50 mA. The intensity of the
neutron radiation D (mSv/h) in the transport channels
depending from the proton beam current Ip (mkA)
shown in Fig. 2. The neutron radiation intensity in the
transport channels registered with the help of UDBN-
02R detectors № 5, 25 и 45.
Fig. 2. The intensity of the secondary neutron
radiation D (mSv/h) in the transportation channels
On the basis of the investigations have been
established the system monitoring the secondary
neutron radiation and the proton beam loss during beam
transport from Linac to RADEX facility, the neutron
source IN-06, the lead slowing-down neutron spectrom-
eter LSNS-100 and the proton therapy (PT) facility).
The small-sized neutron monitors are used in the
measurement of beam losses at high current accelerator,
Oak Ridge National Laboratory, USA. These monitors
have been designed at INR Linac Complex.
1. MONITORING SYSTEM
The control system of transportation proton beam
from a linear accelerator to irradiators is based on fast
neutron detectors UDBN-02P, located in the beam
transport channels (Fig. 3).
The system monitoring the beam transport includes a
terminal controller, which is connected to the computer.
The neutron detectors are located along the ion guide,
near the formative elements of the transport channels
and near the target irradiation facilities (RADEX, IN-
06, LSNS-100, the proton therapy facility). The detec-
tors in the transport channels are used for the beam loss
measurements. The detectors near the irradiation facili-
ISSN 1562-6016. ВАНТ. 2014. №3(91) 170
ties are the monitors of neutron beams and can be used
to monitor the proton beam intensity.
Fig. 3. Layout of neutron detectors of the system
monitoring the proton beam transportation
Software module monitoring system determines and
shows the dose power of the secondary neutron radia-
tion in real time.
Fig. 4 shows the level of neutron radiation in the
proton transporting channel to IN-06 source, as meas-
ured by the UDBN detector № 55 near the 1MS3 mag-
net at a frequency pulse current of the proton beam from
1 to 50 Hz, and corresponds to the average beam current
of 0.7 to 35 mA.
Fig. 4. Diagram of the neutron radiation dose power
measured in the beam transport channel for IN-06
near the bending magnet 1MS3
As can be seen from the timing diagram of the aver-
age neutron dose rate is proportional to the average pro-
ton beam current proton. This is observed in almost all
parts of the beam transport. The information about the
neutron radiation intensity allows you to determine
beam loss in different parts of the transport channel. To
determine the main elements of the ion guide creating
the greatest beam loss beam is measured induced activi-
ty along the beam transport channels [6].
The intensity of the secondary neutron radiation (In)
from the proton beam losses can be estimated by the
formula:
χ
πη
np
n
Ii
kDr 24= , (1)
where 4π − solid angle of the isotropic emission of fast
neutrons; r − distance from the activated ion guide ele-
ment to the neutron detector in cm; Dn − the power dose
of the neutron radiation in mSv/h; k − coefficient quality
of fast neutrons (103 s-1·cm-2·mSv-1·h) [7]; ip − the aver-
age current of the proton beam, in mkA; In − intensity
of fast neutrons at 1 mkA (0.6⋅1013 s-1⋅mkA-1 for the
proton energy of 209 MeV); χ − absorption coefficient
of fast neutrons in the forming element. This factor can
be calculated or determined experimentally.
The value of the beam loss on the main elements
forming the transport channels are shown in Table.
There's also the numbers of neutron detectors, measuring
levels of the neutron radiation close to those elements.
The key elements of the transportation channels,
No. neutron detectors, the beam current, the level
of the measured neutron radiation, the estimated
beam losses on the forming elements
Сhannel ele-
ment
Det.
№
Beam,
mkA
Radiation,
mSv/h
Beam
loss, %
Linac trap 1 0.7 1 100
For trap 2 36 2.5 0.001
МВВ2 5 36 5.6 0.01
МВВ4 6 36 1.8 0.003
2МС2 21 36 0.07 10-4
RADEX target 50 36 8.6 100
2М1 12 18 11.5 0.04
1МС3 55 18 32 0.4
2МС4 25 18 15 0.08
PE2I 27 18 15.5 0.12
PE4I 33 18 45 0.1
ЗВ17 34 18 7.5 0.2
IN-06 target 30 18 4 4
IN 06 target 40 18 6 100
PT target 58 2 5 100
χ coefficient close to 1 to determine the proton beam
loss on the beam line. To the proton beam trap at the
facility RADEX this ratio is 8⋅10-3 in the direction of the
horizontal channel spectrometer time of flight (SVPN).
To the proton beam trap at the 83 rd axis of the Linac χ
factor close to 1⋅10-3. For neutron monitor of the proton
therapy facility fast neutron absorption coefficient is
about 0.01. The proton beam losses for the beam traps
and the target facility are 100%.
The beam losses in the first approximation are inde-
pendent of the average beam current and are determined
by the parameters of elements forming the beam trans-
portation channels.
2. MONITORING BEAM INSTABILITY
The system monitoring the proton beam transport
temporal variations of the beam intensity in local areas
transporting channels. These changes arise are due to
changes in operating mode of the channels or instability
of the elements forming the beam transport channels.
The neutron radiation intensity changes in the medical
channel and in the PT procedural caused by blocking the
beam covering the beam emergency workers or shutter.
The monitoring system allows you to monitor this pro-
cess using neutron detectors № 58 and 60 (Fig. 5).
The diagrams clearly observed correlation between
the levels of neutron radiation in both sections of the
proton beam transport due to the presence or absence of
the beam in the procedural of proton therapy.
ISSN 1562-6016. ВАНТ. 2014. №3(91) 171
Fig. 5. The profile of the intensity level of neutron
radiation in the medical channel (1) and
in the procedural of proton therapy (2)
An example of changing the intensity of the beam of
protons due to the unstable form of the elements in the
area with a magnet 2M2 and lenses L78-81, L61 in the
transport path of the beam on the target neutron source
IN 06 is shown in Fig. 6.
Fig. 6. Diagram of the neutron radiation intensity
in the beam transport channel for source IN 06:
1 – neutron background in the area of the 2M2 magnet;
2 – neutron flux in the neutron channel of IN 06
The time dependence of the radiation intensity at the
site in front of the magnet 2M2 repeats depending on
the intensity of the preceding sections of the channel.
Time instability of the secondary neutron radiation may
be due to the instability of the formative elements in the
area near PE2I profilometer and 2M2 magnet.
CONCLUSIONS
Join the neutron component of the secondary radia-
tion can significantly improve the accuracy of meas-
urements of beam losses.
Measured levels of secondary neutron radiation in
the transport path of the proton beam is proportional to
the average beam current and beam losses in the value
of the measured sections of ions noprovoda.
The monitoring system allows rapid control of the
beam transport and significantly reduce background
radiation and activation equipment.
Neutron radiation measured by the monitoring sys-
tem can receive timely information about the losses of
the beam and correction of operational parameters
which form the transport channel devices to improve the
quality of beam.
REFERENCES
1. B.A. Benetskii, F.Z. Vahetov, M.I. Grachev, et al.
The program of experimental studies on the installa-
tion RADEX: Preprint INR RAS. 2001, 1126/2001.
2. V.K. Matushko, Y.V. Ryabov, V.N. Slastnikov.
Measurement of the average number of neutrons emit-
ted by a lead target irradiated by protons with energies
of 250 MeV: Preprint INR RAS. 1982, P-0249.
3. Yu.M. Nikolaev, S.V. Serezchnikov. The automatic
radiation control system of the ECMF: Preprint INR
RAS, 1989, P-0619.
4. M.I. Grachev, V.A. Kljushnikov, S.I. Kuptsov, et al.
The automatic radiation control system of the INR
linear accelerator (Troitsk) // Proceedings of RuPAC
XIX. Dubna. 2004, p. 483-484.
5. B.A. Benetskii, S.I. Potachev, V.A. Simonov, et al.
Improvement radio method research deoxyribonucleic
acids immobilized on a solid support followed by
neutron activation: Preprint INR RAS, 2004,
1126/2004.
6. S.V. Aculinichev, M.I. Grachev, V.M. Skorkin.
Measuring beam loss of the proton linac by detect-
ing neutron radiation // Problems of Atomic Science
and Technology. Series "Nuclear Physics Investiga-
tions". 2012, №3, p. 215-217.
7. V.F. Kozlov. Handbook of radiation safety.
Moscow: “Atomizdat”. 1977, p. 125-128.
Article received 02.12.2013
СИСТЕМА МОНИТОРИРОВАНИЯ ТРАНСПОРТИРОВКИ ПУЧКА ПРОТОНОВ НА ОБЛУЧАТЕЛЬНЫЕ
УСТАНОВКИ
В.М. Скоркин, С.В. Акулиничев
Мониторная система в режиме реального времени контролирует прохождение пучка протонов линейного ускорителя
до экспериментальных установок по вторичному нейтронному излучению от потерь пучка. Система состоит из детекто-
ров нейтронов в канале транспортировки и терминального контроллера, соединённого с компьютером. Мониторная си-
стема позволяет определять потери пучка и контролировать работу формирующих элементов транспортного канала.
СИСТЕМА МОНІТОРУВАННЯ ТРАНСПОРТУВАННЯ ПУЧКА ПРОТОНІВ НА УСТАНОВКИ ОПРОМІНЕННЯ
В.М. Скоркін, С.В. Акулінічев
Моніторна система в режимі реального часу контролює проходження пучка протонів лінійного прискорювача до ек-
спериментальних установок за вторинним нейтронним випромінюванням від втрат пучка. Система складається з детек-
торів нейтронів у каналі транспортування і термінального контролера, сполученого з комп'ютером. Моніторна система
дозволяє визначати втрати пучка і виявляти нестабільність роботи формуючих елементів транспортного каналу.
INTRODUCTION
1. 1TMONITORING1T2T 1T2TSYSTEM
2. 1TMONITORING1T2T 1T2Tbeam instability
1TCONCLUSIONS
references
|