Monitoring system for proton beam transport to the irradiation facilitie

A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path and terminal controller connected to the computer. Monitor system allow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Skorkin, V.M., Akulinichev, S.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/80278
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Monitoring system for proton beam transport to the irradiation facilitie / V.M. Skorkin, S.V. Akulinichev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 169-171. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80278
record_format dspace
spelling irk-123456789-802782015-04-15T03:02:33Z Monitoring system for proton beam transport to the irradiation facilitie Skorkin, V.M. Akulinichev, S.V. Применение ускорителей в радиационных технологиях A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path and terminal controller connected to the computer. Monitor system allows to determine the beam losses and to detect instability of the formative elements. Мониторная система в режиме реального времени контролирует прохождение пучка протонов линейного ускорителя до экспериментальных установок по вторичному нейтронному излучению от потерь пучка. Система состоит из детекторов нейтронов в канале транспортировки и терминального контроллера, соединённого с компьютером. Мониторная система позволяет определять потери пучка и контролировать работу формирующих элементов транспортного канала. Моніторна система в режимі реального часу контролює проходження пучка протонів лінійного прискорювача до ек- спериментальних установок за вторинним нейтронним випромінюванням від втрат пучка. Система складається з детек- торів нейтронів у каналі транспортування і термінального контролера, сполученого з комп'ютером. Моніторна система дозволяє визначати втрати пучка і виявляти нестабільність роботи формуючих елементів транспортного каналу. 2014 Article Monitoring system for proton beam transport to the irradiation facilitie / V.M. Skorkin, S.V. Akulinichev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 169-171. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.27.Eg, 87.53.Qc http://dspace.nbuv.gov.ua/handle/123456789/80278 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Skorkin, V.M.
Akulinichev, S.V.
Monitoring system for proton beam transport to the irradiation facilitie
Вопросы атомной науки и техники
description A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path and terminal controller connected to the computer. Monitor system allows to determine the beam losses and to detect instability of the formative elements.
format Article
author Skorkin, V.M.
Akulinichev, S.V.
author_facet Skorkin, V.M.
Akulinichev, S.V.
author_sort Skorkin, V.M.
title Monitoring system for proton beam transport to the irradiation facilitie
title_short Monitoring system for proton beam transport to the irradiation facilitie
title_full Monitoring system for proton beam transport to the irradiation facilitie
title_fullStr Monitoring system for proton beam transport to the irradiation facilitie
title_full_unstemmed Monitoring system for proton beam transport to the irradiation facilitie
title_sort monitoring system for proton beam transport to the irradiation facilitie
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Применение ускорителей в радиационных технологиях
url http://dspace.nbuv.gov.ua/handle/123456789/80278
citation_txt Monitoring system for proton beam transport to the irradiation facilitie / V.M. Skorkin, S.V. Akulinichev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 169-171. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT skorkinvm monitoringsystemforprotonbeamtransporttotheirradiationfacilitie
AT akulinichevsv monitoringsystemforprotonbeamtransporttotheirradiationfacilitie
first_indexed 2025-07-06T04:14:49Z
last_indexed 2025-07-06T04:14:49Z
_version_ 1836869526822584320
fulltext ISSN 1562-6016. ВАНТ. 2014. №3(91) 169 MONITORING SYSTEM FOR PROTON BEAM TRANSPORT TO THE IRRADIATION FACILITIE V.M. Skorkin, S.V. Akulinichev Institute for nuclear research of RAS, Moscow, Russia E-mail: skorkin@inr.ru A monitoring system online controls a proton beam passage from Linac to the experimental units by measuring a secondary neutron radiation from the beam losses. The system consists of the neutron detectors in the transport path and terminal controller connected to the computer. Monitor system allows to determine the beam losses and to de- tect instability of the formative elements. PACS: 29.27.Eg, 87.53.Qc INTRODUCTION When transporting the proton beam of the linear ac- celerator portion of the beam is lost in the beam line and the elements forming tube in the transportation chan- nels. As a result of the beam loss is formed multicomponent secondary radiation that provides the background radiation. Nuclear reactions are activated ion guide elements. High proton beam losses can cause thermal damage to the vacuum system. In control systems of the accelerator beam losses commonly used monitors secondary gamma radiation. However, the weakening of the gamma-ray structural materials and background X-rays distort the information received from the monitors. At intermediate energies, the main component of the secondary radiation from the proton beam loss is fast neutrons [1]. The main part of the secondary radiation makes up the evaporation neutrons with approximately isotropic distribution (Fig. 1). The share of cascade neu- trons of higher energies is less than 10% [2]. Fig. 1. The evaporation neutron yield per lost proton One lost proton creates approximately one fast neutron. Fast neutrons in the transport channels can be registered with help of fast neutron detectors. Forming elements which create the beam losses are determined by measuring the induced activity. The components of the secondary neutron and gamma radiation were investigated by using the automated radiation control system (ARCS) of INR Experimental complex during transportation proton beam to RADEX irradiation facilities, the pulsed neutron source IN-06 and the proton therapy facilities [3, 4]. It was found that the level of background radiation of secondary neutrons is order of magnitude larger than the secondary gamma radiation at the proton energy from 70 to 209 MeV. With the help of UDBN-02R neutron detectors of ARCS system was investigated intensity of secondary neutron radiation in the transport channels in depend- ence on the current beam of protons on target irradia- tors. In [5] obtained a linear dependence of the radiation background in the transport path of the beam on the current value of the proton beam on RADEX. In the future, such studies have been conducted in the channels of transportation to other proton beam irradiation facilities at the beam energy up to 209 MeV and a beam current up to 50 mA. The intensity of the neutron radiation D (mSv/h) in the transport channels depending from the proton beam current Ip (mkA) shown in Fig. 2. The neutron radiation intensity in the transport channels registered with the help of UDBN- 02R detectors № 5, 25 и 45. Fig. 2. The intensity of the secondary neutron radiation D (mSv/h) in the transportation channels On the basis of the investigations have been established the system monitoring the secondary neutron radiation and the proton beam loss during beam transport from Linac to RADEX facility, the neutron source IN-06, the lead slowing-down neutron spectrom- eter LSNS-100 and the proton therapy (PT) facility). The small-sized neutron monitors are used in the measurement of beam losses at high current accelerator, Oak Ridge National Laboratory, USA. These monitors have been designed at INR Linac Complex. 1. MONITORING SYSTEM The control system of transportation proton beam from a linear accelerator to irradiators is based on fast neutron detectors UDBN-02P, located in the beam transport channels (Fig. 3). The system monitoring the beam transport includes a terminal controller, which is connected to the computer. The neutron detectors are located along the ion guide, near the formative elements of the transport channels and near the target irradiation facilities (RADEX, IN- 06, LSNS-100, the proton therapy facility). The detec- tors in the transport channels are used for the beam loss measurements. The detectors near the irradiation facili- ISSN 1562-6016. ВАНТ. 2014. №3(91) 170 ties are the monitors of neutron beams and can be used to monitor the proton beam intensity. Fig. 3. Layout of neutron detectors of the system monitoring the proton beam transportation Software module monitoring system determines and shows the dose power of the secondary neutron radia- tion in real time. Fig. 4 shows the level of neutron radiation in the proton transporting channel to IN-06 source, as meas- ured by the UDBN detector № 55 near the 1MS3 mag- net at a frequency pulse current of the proton beam from 1 to 50 Hz, and corresponds to the average beam current of 0.7 to 35 mA. Fig. 4. Diagram of the neutron radiation dose power measured in the beam transport channel for IN-06 near the bending magnet 1MS3 As can be seen from the timing diagram of the aver- age neutron dose rate is proportional to the average pro- ton beam current proton. This is observed in almost all parts of the beam transport. The information about the neutron radiation intensity allows you to determine beam loss in different parts of the transport channel. To determine the main elements of the ion guide creating the greatest beam loss beam is measured induced activi- ty along the beam transport channels [6]. The intensity of the secondary neutron radiation (In) from the proton beam losses can be estimated by the formula: χ πη np n Ii kDr 24= , (1) where 4π − solid angle of the isotropic emission of fast neutrons; r − distance from the activated ion guide ele- ment to the neutron detector in cm; Dn − the power dose of the neutron radiation in mSv/h; k − coefficient quality of fast neutrons (103 s-1·cm-2·mSv-1·h) [7]; ip − the aver- age current of the proton beam, in mkA; In − intensity of fast neutrons at 1 mkA (0.6⋅1013 s-1⋅mkA-1 for the proton energy of 209 MeV); χ − absorption coefficient of fast neutrons in the forming element. This factor can be calculated or determined experimentally. The value of the beam loss on the main elements forming the transport channels are shown in Table. There's also the numbers of neutron detectors, measuring levels of the neutron radiation close to those elements. The key elements of the transportation channels, No. neutron detectors, the beam current, the level of the measured neutron radiation, the estimated beam losses on the forming elements Сhannel ele- ment Det. № Beam, mkA Radiation, mSv/h Beam loss, % Linac trap 1 0.7 1 100 For trap 2 36 2.5 0.001 МВВ2 5 36 5.6 0.01 МВВ4 6 36 1.8 0.003 2МС2 21 36 0.07 10-4 RADEX target 50 36 8.6 100 2М1 12 18 11.5 0.04 1МС3 55 18 32 0.4 2МС4 25 18 15 0.08 PE2I 27 18 15.5 0.12 PE4I 33 18 45 0.1 ЗВ17 34 18 7.5 0.2 IN-06 target 30 18 4 4 IN 06 target 40 18 6 100 PT target 58 2 5 100 χ coefficient close to 1 to determine the proton beam loss on the beam line. To the proton beam trap at the facility RADEX this ratio is 8⋅10-3 in the direction of the horizontal channel spectrometer time of flight (SVPN). To the proton beam trap at the 83 rd axis of the Linac χ factor close to 1⋅10-3. For neutron monitor of the proton therapy facility fast neutron absorption coefficient is about 0.01. The proton beam losses for the beam traps and the target facility are 100%. The beam losses in the first approximation are inde- pendent of the average beam current and are determined by the parameters of elements forming the beam trans- portation channels. 2. MONITORING BEAM INSTABILITY The system monitoring the proton beam transport temporal variations of the beam intensity in local areas transporting channels. These changes arise are due to changes in operating mode of the channels or instability of the elements forming the beam transport channels. The neutron radiation intensity changes in the medical channel and in the PT procedural caused by blocking the beam covering the beam emergency workers or shutter. The monitoring system allows you to monitor this pro- cess using neutron detectors № 58 and 60 (Fig. 5). The diagrams clearly observed correlation between the levels of neutron radiation in both sections of the proton beam transport due to the presence or absence of the beam in the procedural of proton therapy. ISSN 1562-6016. ВАНТ. 2014. №3(91) 171 Fig. 5. The profile of the intensity level of neutron radiation in the medical channel (1) and in the procedural of proton therapy (2) An example of changing the intensity of the beam of protons due to the unstable form of the elements in the area with a magnet 2M2 and lenses L78-81, L61 in the transport path of the beam on the target neutron source IN 06 is shown in Fig. 6. Fig. 6. Diagram of the neutron radiation intensity in the beam transport channel for source IN 06: 1 – neutron background in the area of the 2M2 magnet; 2 – neutron flux in the neutron channel of IN 06 The time dependence of the radiation intensity at the site in front of the magnet 2M2 repeats depending on the intensity of the preceding sections of the channel. Time instability of the secondary neutron radiation may be due to the instability of the formative elements in the area near PE2I profilometer and 2M2 magnet. CONCLUSIONS Join the neutron component of the secondary radia- tion can significantly improve the accuracy of meas- urements of beam losses. Measured levels of secondary neutron radiation in the transport path of the proton beam is proportional to the average beam current and beam losses in the value of the measured sections of ions noprovoda. The monitoring system allows rapid control of the beam transport and significantly reduce background radiation and activation equipment. Neutron radiation measured by the monitoring sys- tem can receive timely information about the losses of the beam and correction of operational parameters which form the transport channel devices to improve the quality of beam. REFERENCES 1. B.A. Benetskii, F.Z. Vahetov, M.I. Grachev, et al. The program of experimental studies on the installa- tion RADEX: Preprint INR RAS. 2001, 1126/2001. 2. V.K. Matushko, Y.V. Ryabov, V.N. Slastnikov. Measurement of the average number of neutrons emit- ted by a lead target irradiated by protons with energies of 250 MeV: Preprint INR RAS. 1982, P-0249. 3. Yu.M. Nikolaev, S.V. Serezchnikov. The automatic radiation control system of the ECMF: Preprint INR RAS, 1989, P-0619. 4. M.I. Grachev, V.A. Kljushnikov, S.I. Kuptsov, et al. The automatic radiation control system of the INR linear accelerator (Troitsk) // Proceedings of RuPAC XIX. Dubna. 2004, p. 483-484. 5. B.A. Benetskii, S.I. Potachev, V.A. Simonov, et al. Improvement radio method research deoxyribonucleic acids immobilized on a solid support followed by neutron activation: Preprint INR RAS, 2004, 1126/2004. 6. S.V. Aculinichev, M.I. Grachev, V.M. Skorkin. Measuring beam loss of the proton linac by detect- ing neutron radiation // Problems of Atomic Science and Technology. Series "Nuclear Physics Investiga- tions". 2012, №3, p. 215-217. 7. V.F. Kozlov. Handbook of radiation safety. Moscow: “Atomizdat”. 1977, p. 125-128. Article received 02.12.2013 СИСТЕМА МОНИТОРИРОВАНИЯ ТРАНСПОРТИРОВКИ ПУЧКА ПРОТОНОВ НА ОБЛУЧАТЕЛЬНЫЕ УСТАНОВКИ В.М. Скоркин, С.В. Акулиничев Мониторная система в режиме реального времени контролирует прохождение пучка протонов линейного ускорителя до экспериментальных установок по вторичному нейтронному излучению от потерь пучка. Система состоит из детекто- ров нейтронов в канале транспортировки и терминального контроллера, соединённого с компьютером. Мониторная си- стема позволяет определять потери пучка и контролировать работу формирующих элементов транспортного канала. СИСТЕМА МОНІТОРУВАННЯ ТРАНСПОРТУВАННЯ ПУЧКА ПРОТОНІВ НА УСТАНОВКИ ОПРОМІНЕННЯ В.М. Скоркін, С.В. Акулінічев Моніторна система в режимі реального часу контролює проходження пучка протонів лінійного прискорювача до ек- спериментальних установок за вторинним нейтронним випромінюванням від втрат пучка. Система складається з детек- торів нейтронів у каналі транспортування і термінального контролера, сполученого з комп'ютером. Моніторна система дозволяє визначати втрати пучка і виявляти нестабільність роботи формуючих елементів транспортного каналу. INTRODUCTION 1. 1TMONITORING1T2T 1T2TSYSTEM 2. 1TMONITORING1T2T 1T2Tbeam instability 1TCONCLUSIONS references