New type of metal targets
Now the technologies based on interaction of high-intensity beams with substance of a target are being intensively developed. As a target it is possible to use the new type of monodisperse metal targets. The principal advantages of new targets type are: target cooling isn't required; there is...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/80282 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | New type of metal targets / A.V. Bukharov, V.B. Ankudinov, V.P. Ogorodnikov, Y.A. Marukhin // Вопросы атомной науки и техники. — 2014. — № 3. — С. 190-193. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-80282 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-802822015-04-15T03:02:34Z New type of metal targets Bukharov, A.V. Ankudinov, V.B. Ogorodnikov, V.P. Marukhin, Y.A. Применение ускорителей в радиационных технологиях Now the technologies based on interaction of high-intensity beams with substance of a target are being intensively developed. As a target it is possible to use the new type of monodisperse metal targets. The principal advantages of new targets type are: target cooling isn't required; there is no induced activity: the target can be used many times; small dispersion on the speed, the size and interaction points with a beam. The basis of a target is the jet of molten metal, following in the vacuum chamber .Under the influence of the special disturbance superimposed on the liquid jet, the jet disintegrated into identical drops. In the vacuum chamber the drops freeze and form into the solid granules. It is possible to receive monodisperse targets from different metals, alloys and salts (diameter of targets is from 30 µm to 1.5 mm). Dispersion by the sizes and speed is less than 1%. The technique allows to receive not only continuous targets, but also hollow targets with dispersion on thickness of wall within 1…2%. В настоящее время наиболее бурно развиваются технологии, в основе которых лежит взаимодействие высокоинтенсивных пучков с веществом мишени. В качестве мишени можно использовать новый тип металлических мишеней − монодисперсные металлические мишени. Основные преимущества нового типа мишеней: не требуется охлаждения мишени; нет наведённой активности: мишень можно использовать много раз; малый разброс по скорости, размеру и точке взаимодействия с пучком. Основу мишени составляет струя расплавленного металла, вытекающая в вакуумную камеру. Под действием специального возмущения, накладываемого на жидкую струю, струя распадается на одинаковые капли. В вакуумной камере капли замерзают и становятся твёрдыми гранулами. Монодисперсные металлические мишени можно получать из различных металлов, сплавов и солей (диаметр мишеней от 30 мкм до 1,5 мм). Дисперсия по размерам и скорости меньше 1%. Можно получать не только сплошные мишени, но и полые мишени с дисперсией по толщине стенки в пределах 1…2%. В даний час найбурхливіше розвиваються технології, в основі яких лежить взаємодія високоінтенсивних пучків з речовиною мішені. Як мішень можна використовувати новий тип металевих мішеней − монодисперсні металеві мішені. Основні переваги нового типу мішеней: не потрібне охолоджування мішені; немає наведеної активності: мішень можна використовувати багато разів; малий розкид за швидкістю, розміром і точкою взаємодії з пучком. Основу мішені складає струмінь розплавленого металу, витікаючий у вакуумну камеру. Під дією спеціального обурення, що накладається на рідкий струмінь, струмінь розпадається на однакові краплі. У вакуумній камері краплі замерзають і стають твердими гранулами. Монодисперсні металеві мішені можна отримувати з різних металів, сплавів і солей (діаметр мішеней від 193 30 мкм до 1,5 мм). Дисперсія за розмірами і швидкістю менше 1%. Можна отримувати не лише суцільні мішені, але і порожнисті мішені з дисперсією за товщиною стінки в межах 1…2%. 2014 Article New type of metal targets / A.V. Bukharov, V.B. Ankudinov, V.P. Ogorodnikov, Y.A. Marukhin // Вопросы атомной науки и техники. — 2014. — № 3. — С. 190-193. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.50.Jm, 81.05.-T http://dspace.nbuv.gov.ua/handle/123456789/80282 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях |
spellingShingle |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях Bukharov, A.V. Ankudinov, V.B. Ogorodnikov, V.P. Marukhin, Y.A. New type of metal targets Вопросы атомной науки и техники |
description |
Now the technologies based on interaction of high-intensity beams with substance of a target are being intensively
developed. As a target it is possible to use the new type of monodisperse metal targets. The principal advantages
of new targets type are: target cooling isn't required; there is no induced activity: the target can be used many times;
small dispersion on the speed, the size and interaction points with a beam. The basis of a target is the jet of molten
metal, following in the vacuum chamber .Under the influence of the special disturbance superimposed on the liquid
jet, the jet disintegrated into identical drops. In the vacuum chamber the drops freeze and form into the solid granules.
It is possible to receive monodisperse targets from different metals, alloys and salts (diameter of targets is from
30 µm to 1.5 mm). Dispersion by the sizes and speed is less than 1%. The technique allows to receive not only continuous
targets, but also hollow targets with dispersion on thickness of wall within 1…2%. |
format |
Article |
author |
Bukharov, A.V. Ankudinov, V.B. Ogorodnikov, V.P. Marukhin, Y.A. |
author_facet |
Bukharov, A.V. Ankudinov, V.B. Ogorodnikov, V.P. Marukhin, Y.A. |
author_sort |
Bukharov, A.V. |
title |
New type of metal targets |
title_short |
New type of metal targets |
title_full |
New type of metal targets |
title_fullStr |
New type of metal targets |
title_full_unstemmed |
New type of metal targets |
title_sort |
new type of metal targets |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2014 |
topic_facet |
Применение ускорителей в радиационных технологиях |
url |
http://dspace.nbuv.gov.ua/handle/123456789/80282 |
citation_txt |
New type of metal targets / A.V. Bukharov, V.B. Ankudinov, V.P. Ogorodnikov, Y.A. Marukhin // Вопросы атомной науки и техники. — 2014. — № 3. — С. 190-193. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bukharovav newtypeofmetaltargets AT ankudinovvb newtypeofmetaltargets AT ogorodnikovvp newtypeofmetaltargets AT marukhinya newtypeofmetaltargets |
first_indexed |
2025-07-06T04:15:03Z |
last_indexed |
2025-07-06T04:15:03Z |
_version_ |
1836869541511036928 |
fulltext |
ISSN 1562-6016. ВАНТ. 2014. №3(91) 190
NEW TYPE OF METAL TARGETS
A.V. Bukharov, V.B. Ankudinov, V.P. Ogorodnikov, Y.A. Marukhin
Moscow Power and Engineering Institute (MPEI), Moscow, Russia
E-mail: boukharov@mail.ru
Now the technologies based on interaction of high-intensity beams with substance of a target are being intensive-
ly developed. As a target it is possible to use the new type of monodisperse metal targets. The principal advantages
of new targets type are: target cooling isn't required; there is no induced activity: the target can be used many times;
small dispersion on the speed, the size and interaction points with a beam. The basis of a target is the jet of molten
metal, following in the vacuum chamber .Under the influence of the special disturbance superimposed on the liquid
jet, the jet disintegrated into identical drops. In the vacuum chamber the drops freeze and form into the solid gran-
ules. It is possible to receive monodisperse targets from different metals, alloys and salts (diameter of targets is from
30 µm to 1.5 mm). Dispersion by the sizes and speed is less than 1%. The technique allows to receive not only con-
tinuous targets, but also hollow targets with dispersion on thickness of wall within 1…2%.
PACS: 52.50.Jm, 81.05.-T
INTRODUCTION
Now the technologies based on interaction of high-
intensity beams with substance of a target are being
intensively developed.
The interaction of high-intensity beams with a sub-
stance of a target will allow: to create the compact
sources of protons for a radiography; will give the
chance to make isotopes and to develop new methods in
nuclear medicine; will allow to make experiments on
nuclear physics on super-short periods [1].
Now for research of interaction of high-intensity
beams with a target material wide usage has been gained
the metal targets of the following types: wire targets and
targets from a foil [2]. The main advantage of these tar-
gets is ease of fabrication. However there are also essen-
tial disadvantages: the targets need cooling; there is the
induced activity, a fast damage of a target surface [3].
Instead of existing target types it is possible to use
the new type of monodisperse metal targets developed
by us.
The principal advantages of new targets type are:
target cooling isn't required; there is no induced activity:
the target can be used many times; small dispersion on
the speed, the size and interaction points with a beam.
Theoretical basis of target operation is Rayleigh-
Weber's theory for viscous liquids [4]. According to this
theory the jet breaks up to drops with the minimum dis-
persion on the speed and the sizes (monodisperse drops)
at a certain relationship between a jet speed, jet diameter
and frequency of external excitation.
The operation of the installation on receiving targets
is shown in Fig. 1.
Constructional target elements are: the crucible with
molten metal; the generator of monodisperse drops; the
system of vacuum chambers and sluices; a trap. Addi-
tional elements of a target are: the system of pressure
stabilizing, excitation system, charging system and de-
viation system. If drops charge beforehand by using the
charging system, it is possible to control a path of a drop
flow having given controlling signals on deviation sys-
tem. It is very important feature of new metal targets.
Flow control gives the chance precisely to coordinate
the moment of interaction of a target with a beam.
Based on the principle described above, it is possible
to create the ecologically-sound and waste-free installa-
tions on receiving targets.
Fig. 1. The principle of target operation
The installation operates as following. The jet of mol-
ten metal follows from the drops generator in the first
chamber filled with cooling gas. The jet breaks up to
identical drops in response to external excitation imposed
on the fluid jet. There is a preliminary cooling of drops
due to interaction to gas in the first chamber. Passing
through sluices and vacuum chambers, drops freeze and
become solid granules. Monodisperse solid granules ar-
rive in the working chamber where there is an interac-
tion to an accelerating or laser beam. Sluices provide the
minimum leaking in the working chamber. For reduc-
tion of leaking it is possible to use two and more vacu-
um chambers separated among themselves by sluices.
1. THE EXPERIMENTAL INSTALLATION
For study of heat-physical problems of receiving
monodisperse metal targets the experimental installation
is created.
Installation offers possibilities to study heat-physical
problems of receiving monodisperse metal targets from
different metals and their alloys with a melting tempera-
ture to 1600°C. Layout of basic installation elements
and its appearance are provided in Fig. 2 and Fig. 3
ISSN 1562-6016. ВАНТ. 2014. №3(91) 191
Fig. 2. Layout of basic installation elements
Fig. 3. Appearance of installation
Installation consists of the following main systems:
the drops generator 1 with excitation system, heating
system with the crucible 2, the heat-exchanging cham-
ber 5 with external part 4, a cooled trap, system of pres-
sure stabilizing, temperature control system with ther-
mocouple sensors 3, pressure control system, observa-
tion system and pumping system. By means of heating
system metal is molten in the crucible 2. There is excess
pressure over a melt in the crucible. Pressure is regulat-
ed and supported at necessary level by means of stabi-
lizing system. Helium purified from oxygen arrives on
an input of stabilizing system. The jet of liquid metal
will be formed on an output of the crucible. Capillary
waves are created on a jet using excitation system and a
piezoelement 1. The jet breaks up to monodisperse
drops at a certain relationship between a jet speed, jet
diameter, viscosity and frequency of external excitation.
It is possible to receive the metal jets with diameters
from 30 to 400 µm changing diameter of an exit orifice
of the crucible.
The jet disintegrates on drops in the heat-exchanging
camera 5 filled with pure helium. Helium has the great-
est thermal conduction. It allows to cool the falling
drops very quickly.
Monitoring over the heat-physical processes in the
heat-exchanging chamber is carried out by means of the
pressure control system and temperature control system.
For pressure control the sensors of Balzers firm of the
following types are used: APR 260 (1000 mbar), APR
265 (5000 mbar) and TPR 260. Indications of sensors
were digitized in the measurement unit of pressure of
TPG 265 "Balzers" and arrived on a computer. The
measurement error of pressure made: for sensors of
APR type ±10mbar, for sensors of TPR type ±10-4 mbar.
Thermocouple sensors 3 were used for control of
temperature. Indications of sensors were digitized in the
measurement unit of temperatures and arrived on a
computer input. The measurement error of temperature
makes ±0.3 K. Processing of sensors indications and
visual observation of the information was carried out by
means of a computer.
Fig. 4. Photo of granules from steel with a granules
diameter from 130 to 350 µm
Monitoring over the jet disintegration on drops de-
velops by means of observation system, strobotac of
ST-MPEI and a digital television camera of CD (Pix-
elFly firm “Pro.imaging”). Strobotac provided illumina-
tion of the jet and drops short light pulses (with dura-
tions of 1 µs.). Start of strobotac was carried out by a
signal with a frequency, the synchronous signal fre-
quency, given on the drops generator. The digital televi-
sion camera of CD was used for fixing of the processes
of formation of drops.
For pumping of the heat-exchanging chamber the
pumping system was used before filling with helium.
ISSN 1562-6016. ВАНТ. 2014. №3(91) 192
2. THE EXPERIMENTAL RESULTS
By means of the experimental installation were re-
ceived the monodisperse granules from different metals
(Pb, Sn, Sb, Zn, Al, Cu,Ag,Au, Nd and steel). Diameter
of granules is from 30 µm to 1.5 mm. Dispersion by the
granules diameter is 1…2%. The granules have the
spherical form. The coefficient of nonsphericity doesn't
exceed 1%. As an example the photo of granules from
steel with a granules diameter from 130 to 350 µm is
provided in Fig. 4. For the accelerated cooling of drops
the external part 4 of the heat-exchanging chamber 5
was filled with liquid nitrogen (see Fig. 2).
Fig. 5. The scheme of receiving hollow drops
Fig. 6. Photo of hollow copper granules
Experiments on receiving the hollow granules were
conducted. The crucible was specially made for this
purpose. The exit orifice of the crucible was provided
by two coaxial holes. The molten metal jet followed
through an external hole, and gas was injected into a jet
through an internal hole. The scheme of receiving hol-
low drops is shown in Fig. 5.
The metal and gas expenditure is defined experimen-
tally at the jet disintegration into hollow monodisperse
drops. Photo of hollow copper granules with outer di-
ameter of 1.4 mm and wall thickness of 30 µm are
shown in Fig. 6. Dispersion of the hollow granules on
diameter, wall thickness and nonsphericity is 1…2%.
CONCLUSIONS
Thus, the developed experimental installation allows
to receive the continuous monodisperse metal targets
from different metals and their alloys with a melting
temperature to 1600°C. Dispersion on diameter of tar-
gets is 1…2%. Besides, stimulated capillary
disintegration of jets can be used for receiving hollow
metal targets. Dispersion of hollow granules on diame-
ter, wall thickness and nonsphericity is 1…2%.
Experiments showed that the main problems of re-
ceiving metal targets consist in receiving a melt jet.
With high temperatures there can be an erosion of
crucible material because a melt interact to a crucible
material. Therefore it is necessary to select the crucible
material stable to melt influence in each case.
When receiving thin jets with diameters of smaller
10 µm, there is an additional problem in filtration of a
melt from solid impurity.
The work was supported by grant RFBR 12-08-01170-а.
REFERENCES
1. John M. Dawson. Plasma Particle Accelerators //
Scientific American, 1989, v. 260, №3, p. 54-61.
2. V.S. Belyaev, A.P. Matafonov, V.P. Krainov, V.S. Lisitsa.
Fast charged particles and super strong magnetic fields
generated by the interaction of high-intensity ultra short
laser pulses with solid targets // Uspekhi Fizicheskikh
Nauk. 2008, v. 178, № 8, p. 823 (in Russian).
3. B.F. Bayanov, V.P. Belov, S.Yu. Taskaev. Neutron
producing target of the accelerator based neutron
source for neutron-capture therapy: Preprint BINP
2005-4, Novosibirsk.
4. Rayleigh, Lord. On the instability of a cylinder of
viscous liquid under capillary force // Phil. Mag.
1892, v. 34, p. 145-154.
Article received 16.10.2013
НОВЫЙ ТИП МЕТАЛЛИЧЕСКИХ МИШЕНЕЙ
А.В. Бухаров, В.Б. Анкудинов, В.П. Огородников, Ю.А. Марухин
В настоящее время наиболее бурно развиваются технологии, в основе которых лежит взаимодействие высокоинтенсив-
ных пучков с веществом мишени. В качестве мишени можно использовать новый тип металлических мишеней − монодис-
персные металлические мишени. Основные преимущества нового типа мишеней: не требуется охлаждения мишени; нет
наведённой активности: мишень можно использовать много раз; малый разброс по скорости, размеру и точке взаимодей-
ствия с пучком. Основу мишени составляет струя расплавленного металла, вытекающая в вакуумную камеру. Под действи-
ем специального возмущения, накладываемого на жидкую струю, струя распадается на одинаковые капли. В вакуумной
камере капли замерзают и становятся твёрдыми гранулами. Монодисперсные металлические мишени можно получать из
различных металлов, сплавов и солей (диаметр мишеней от 30 мкм до 1,5 мм). Дисперсия по размерам и скорости меньше
1%. Можно получать не только сплошные мишени, но и полые мишени с дисперсией по толщине стенки в пределах
1…2%.
НОВИЙ ТИП МЕТАЛЕВИХ МІШЕНЕЙ
А.В. Бухаров , В.Б. Анкудінов, В.П. Огородников, Ю.А. Марухін
В даний час найбурхливіше розвиваються технології, в основі яких лежить взаємодія високоінтенсивних пучків з
речовиною мішені. Як мішень можна використовувати новий тип металевих мішеней − монодисперсні металеві мішені.
Основні переваги нового типу мішеней: не потрібне охолоджування мішені; немає наведеної активності: мішень можна
використовувати багато разів; малий розкид за швидкістю, розміром і точкою взаємодії з пучком. Основу мішені складає
струмінь розплавленого металу, витікаючий у вакуумну камеру. Під дією спеціального обурення, що накладається на
рідкий струмінь, струмінь розпадається на однакові краплі. У вакуумній камері краплі замерзають і стають твердими
гранулами. Монодисперсні металеві мішені можна отримувати з різних металів, сплавів і солей (діаметр мішеней від
ISSN 1562-6016. ВАНТ. 2014. №3(91) 193
30 мкм до 1,5 мм). Дисперсія за розмірами і швидкістю менше 1%. Можна отримувати не лише суцільні мішені, але і
порожнисті мішені з дисперсією за товщиною стінки в межах 1…2%.
|