Searches for SUSY at the LHC

Searches for SUSY with R-parity conservation are connected with LSP particle - the best dark matter candidate. Using the new Minimal Supersymmetric Standard Model (MSSM) parameters received from recent experimental data at the LHC (CMS) it is possible to calculate the mass spectrum, partial widt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Obikhod, T.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/80366
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Searches for SUSY at the LHC / T.V. Obikhod // Вопросы атомной науки и техники. — 2014. — № 5. — С. 3-6. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80366
record_format dspace
spelling irk-123456789-803662015-04-18T03:01:24Z Searches for SUSY at the LHC Obikhod, T.V. Ядерная физика и элементарные частицы Searches for SUSY with R-parity conservation are connected with LSP particle - the best dark matter candidate. Using the new Minimal Supersymmetric Standard Model (MSSM) parameters received from recent experimental data at the LHC (CMS) it is possible to calculate the mass spectrum, partial width and production cross sections of superpatners. In the context of MSSM model histograms of mass distributions for superpartners ~qR and ~g are constructed. Поиски SUSY с сохранением R-четности связаны с LSP-частицей – лучшим кандидатом темной материи. Используя новые MSSM параметры, полученные из последних экспериментальных данных на LHC(CMS), можно посчитать массы, ширины распадов и сечения рождения суперчастиц. В контексте MSSM модели построены гистрограммы распределения масс суперчастиц ~qR и ~q. Пошуки SUSY iз збереженням R-порностi пов'язанi з LSP-частинкою кращим кандидатом темної матерiї. Викормстання нових MSSM параметрiв, отриманих iз останнiх експериментальних даних на LHC(CMS), дає можливiсть розрахувати маси, ширини розпадiв i перерiзи породження суперчастинок. В контекстi MSSM моделi побудованi гiстограми розподiлу мас суперчастинок ~qR i ~g . 2014 Article Searches for SUSY at the LHC / T.V. Obikhod // Вопросы атомной науки и техники. — 2014. — № 5. — С. 3-6. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 11.25.-w, 12.60.Jv, 02.10.Ws http://dspace.nbuv.gov.ua/handle/123456789/80366 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Obikhod, T.V.
Searches for SUSY at the LHC
Вопросы атомной науки и техники
description Searches for SUSY with R-parity conservation are connected with LSP particle - the best dark matter candidate. Using the new Minimal Supersymmetric Standard Model (MSSM) parameters received from recent experimental data at the LHC (CMS) it is possible to calculate the mass spectrum, partial width and production cross sections of superpatners. In the context of MSSM model histograms of mass distributions for superpartners ~qR and ~g are constructed.
format Article
author Obikhod, T.V.
author_facet Obikhod, T.V.
author_sort Obikhod, T.V.
title Searches for SUSY at the LHC
title_short Searches for SUSY at the LHC
title_full Searches for SUSY at the LHC
title_fullStr Searches for SUSY at the LHC
title_full_unstemmed Searches for SUSY at the LHC
title_sort searches for susy at the lhc
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/80366
citation_txt Searches for SUSY at the LHC / T.V. Obikhod // Вопросы атомной науки и техники. — 2014. — № 5. — С. 3-6. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT obikhodtv searchesforsusyatthelhc
first_indexed 2025-07-06T04:20:09Z
last_indexed 2025-07-06T04:20:09Z
_version_ 1836869861968445440
fulltext NUCLEAR PHYSICS AND ELEMENTARY PARTICLES SEARCHES FOR SUSY AT THE LHC T.V.Obikhod ∗ Institute for Nuclear Research, NAS of Ukraine, 03680, Kiev, Ukraine (Received June 13, 2013) Searches for SUSY with R-parity conservation are connected with LSP particle - the best dark matter candidate. Using the new Minimal Supersymmetric Standard Model (MSSM) parameters received from recent experimental data at the LHC (CMS) it is possible to calculate the mass spectrum, partial width and production cross sections of superpatners. In the context of MSSM model histograms of mass distributions for superpartners q̃R and g̃ are constructed. PACS: 11.25.-w, 12.60.Jv, 02.10.Ws 1. INTRODUCTION The gauge hierarchy problem and other shortcomings of the Standard Model (SM) can be resolved by intro- ducing a spectrum of new particles, that are partners of the SM particles [1, 2, 3]. These particles may be neutral, stable and weakly interacting particles that are good dark-matter candidates. The identity and properties of the fundamental particles that could be dark-matter candidates are the most important un- solved problems in particle physics and cosmology. In supersymmetry (SUSY) the R parity conservation is connected with requirement that all SUSY particles to be produced in pairs and the lightest SUSY par- ticle (LSP) to be stable. The LSP will pass through the detector without interacting, carrying away a substantial amount of energy and creating an imbal- ance in the transverse momentum. If squarks are light, their production is enhanced, either through direct pair production or through production medi- ated by gluinos, where the latter process is favored if the gluino production cross section is large. From Fig. 1 we can see the process described above and connected with LSP production. Fig.1. Diagrams of the gluino pair production (left) and squark pair production (right) If confirmed experimentally, supersymmetry could also be considered evidence, because it was discov- ered in the context of string theory, and all consistent string theories are supersymmetric. Superstring the- ory posits a connection between bosons and fermions and require also the existence of several extra dimen- sions to the universe that have been compactified into extremely small scales, in addition to the four known spacetime dimensions. To ensure the vanishing of the conformal anomaly of the worldsheet conformal field theory we must have 10 spacetime dimensions for the superstring. We will consider the following geometry of space-time: R3+1 × C3/Z3 , where the six-dimensional additional space is orb- ifold. Using the correspondence between R3+1 × C3/Z3 and AdS5 × S5 spaces and the fact that we work on additional space, we can graphically and abstractly represent geometry of the superstring: Fig.2. Correspondence between C3/Z3 and S5 geometry From left side of the Fig.2 we have two D- branes that are described by quivers received after blow-up of the singularity C3/Z3 (numbers a, b, c and a ′ , b ′ , c ′ denote orbifold charges [4] char- ∗Corresponding author E-mail address: obikhod@kinr.kiev.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, N5 (93). Series: Nuclear Physics Investigations (63), p.3-6. 3 acterizing McKay quivers) and open superstring is described by Exti groups determined by the dia- gram [5]. On the right part of Fig.2 we can see the Schwarzschild geometry that is connected with Friedmann universes of positive and negative spa- tial curvature and is the geometry of the spacelike hypersurface [6]. 2. PARTICLE CONTENT AND MASS SPECTRUM OF SUPERPARTNERS The moduli space of an open superstring [5] has the form Ext0(Q,Q ′ ) = C aa ′ +bb ′ +cc ′ , Ext1(Q,Q ′ ) = C 3ab ′ +3bc ′ +3ca ′ . (1) Substituting in (1) orbifold charges a = b = c = a′ = b′ = c′ = 4 and using the Langlands hypothesis [7], we obtain the realization of (1) in terms of SU(5) multiplets: 3× (24 + 5H + 5H + 5M + 5M + 10M + 10M ) . This result determines the particle content of the MSSM. The gauge invariant MSSM superpotential takes the form: WSU(5) = λd ij · 5H × 5 (i) M × 10 (j) M + +λu ij · 5H × 10 (i) M × 10 (j) M + µ · 5H × 5H , (2) where 5H and 5H are Higgs multiplets, 5 (i) M and 10 (j) M are multiplets of quark and lepton superpartners, λd ij , λu ij are Yukawa coupling constants and µ is the Higgs mixing parameter. Using the restricted parameter set in (2), received from the recent experimental data [8] M0 = 800 GeV , M1/2 = 650 GeV , A0 = 0 , tanβ = 10 , sgn(µ) = +1 (3) it is possible to calculate the mass spectrum of su- perpartners by application of the computer program SOFTSUSY [9]. This MSSM spectrum is shown in Table 1. Table 1. Mass spectrum of superpartners GeV GeV GeV ũR 1499 g̃ 1498 ũL 1539 ν̃e 901 χ̃0 1 273 d̃R 1495 ẽR 834 χ̃0 2 516 d̃L 1541 ẽL 905 χ̃0 3 792 c̃R 1499 χ̃0 4 805 c̃L 1539 ν̃µ 901 χ̃± 1 516 s̃R 1495 µ̃R 834 χ̃± 2 805 s̃L 1541 µ̃L 905 t̃1 1138 h0 117 t̃2 1411 ν̃τ 898 A0 1188 b̃1 1389 τ̃1 825 H0 1188 b̃2 1487 τ̃2 902 H± 1191 3. PARTIAL WIDTHS AND LSP Using the parameter set (3) it is possible to calcu- late partial widths of superpartners by application of the computer program SDECAY [10]. These partial widths are shown in Tables 2, 3. Table 2. Partial widths of superpartners channel BR channel BR ũR χ̃0 1u 0.997 χ̃0 4u 0.002 d̃R χ̃0 1d 0.997 χ̃0 4d 0.002 c̃R χ̃0 1c 0.997 χ̃0 4c 0.002 s̃R χ̃0 1s 0.997 χ̃0 4s 0.002 Table 3. Partial widths of superpartners channel BR channel BR g̃ b̃1b ∗ 0.074 t̃1t ∗ 0.425 b̃∗1b 0.074 t̃∗1t 0.425 From Fig.1 we can see that after the pp reaction each member of the produced pair initiates a de- cay chain that terminates with the lightest SUSY particle (LSP) and SM particles, typically includ- ing jets (one for squark and two for gluino). This fact can be proven with the help of Tables 1 and 2. From Table 1 we know that lightest SUSY particle is neutralino (χ̃0 1 = 273 GeV) and from Table 2 we can see that all SUSY particles decay through the channel q̃R → q + LSP . If the LSP only interacts weakly, as in the case of a dark-matter candidate, it escapes detection, potentially yielding significant missing transverse energy (Emiss T ). 4. CROSS SECTIONS Using the parameter set (3) it is possible to calculate production cross sections of superpartners by appli- cation of the computer program PYTHIA [11]. These cross sections at center-of-mass energy √ s = 14 TeV are shown in Table 4. Table 4. Cross sections of superpartners channel cross section, pb gg → g̃g̃ σg̃g̃ = 0.139 qg → d̃Rg̃ σd̃Rg̃ = 0.153 qg → ũRg̃ σũRg̃ = 0.341 qq ′ → ũRd̃R σũRd̃R = 0.173 Analysis of the calculated data presented in Table 4, leads us to the conclusion that gluino production pro- cess is one of the four favored processes as was em- phasized in introduction. 4 5. RECONSTRUCTION OF MASSES To construct histograms describing mass distri- butions for superpartners q̃R and g̃ we choose the set of parameters (3). Using this param- eter set it is possible to construct histograms of mass distributions for superpartners by appli- cation of the computer program PYTHIA [11]. This histograms are shown in Figs.3 and 4. Fig.3. Histogram of mass distribution for q̃R Fig.4. Histogram of mass distribution for g̃ 6. CONCLUSIONS Whereas more than 80% of the matter in the universe remains invisible deciphering the nature of this ”dark matter” remains one of the most interesting questions in particle physics. The CMS collaboration recently conducted a search for the direct production of dark- matter particles (χ), with especially good sensitivity in the low-mass region. An important aspect of the search by CMS is that there is no fall in sensitivity for low masses. After event selection, 3677 events were found in the recent analysis. CMS has set limits on the production of dark matter, as shown in the Fig. 5 of the χ-cross-section versus χ mass. Fig.5. χ cross-section versus χ mass The limits show that CMS has good sensitivity in the low-mass regions of interest. Our calculations of neutralino masses as shown in Table 1 are in agree- ment with the last experimental data received from the LHC (CMS). References 1. J.Wess and B. Zumino. Supergauge Transforma- tions in Four Dimensions// Nucl. Phys. 1974, v.B70, p. 39-49. 2. H.-C. Cheng and I. Low. TeV Symmetry and the Little Hierarchy Problem // JHEP. 2003, v.09, p. 1-51. 3. T. Appelquist, H.-C. Cheng, and B. A. Dobrescu. Bounds on Universal Extra Dimensions // Phys. Rev. 2001, v.D64, p. 035002-035011. 4. M.R. Douglas, B. Fiol and C. Römelsberger. The spectrum of BPS branes on a noncompact Calabi- Yau // JHEP. 2005, v.09, p. 1-57. 5. P.S. Aspinwall. D-Branes on Calabi-Yau Mani- folds //arXiv:hep-th/0403166. 6. C.W. Misner, K.S. Thorne and J.A. Wheeler. Gravitation // W.H. Freeman and Company, San Francisco, 1973, 519 p. 7. W. Schmid. Homogeneous complex manifolds and representations of semisimple Lie groups // Proc. Natl. Acad. Sci. USA. 1968, v.69, p. 56-59. 8. The CMS Collaboration. Search for supersymme- try in final states with missing transverse energy and 0, 1, 2, or ≥ 3 b-quark jets in 7TeV pp col- lisions using the variable αT // arXiv:1210.8115 [hep-ex]. 5 9. B.C. Allanach. SOFTSUSY2.0: a program for calculating supersymmetric spectra // Comput. Phys. Commun. 2002, v.143, p. 305-331. 10. M. Muhlleitner, A. Djouadi and Y. Mambrini. SDECAY: a fortran code for the decays of the supersymmetric particles in the MSSM // Com- put. Phys. Commun. 2005, v.168, p. 46-70. 11. T. Sjöstrand, S. Mrenna and P. Skands. PYTHIA 6.4 Physics and Manual // JHEP. 2006, v.05, p. 1-26. ÏÎÈÑÊÈ SUSY ÍÀ LHC Ò.Â.Îáèõîä Ïîèñêè SUSY ñ ñîõðàíåíèåì R-÷åòíîñòè ñâÿçàíû ñ LSP -÷àñòèöåé � ëó÷øèì êàíäèäàòîì òåìíîé ìà- òåðèè. Èñïîëüçóÿ íîâûå MSSM ïàðàìåòðû, ïîëó÷åííûå èç ïîñëåäíèõ ýêñïåðèìåíòàëüíûõ äàííûõ íà LHC(CMS), ìîæíî ïîñ÷èòàòü ìàññû, øèðèíû ðàñïàäîâ è ñå÷åíèÿ ðîæäåíèÿ ñóïåð÷àñòèö.  êîíòåêñòå MSSM ìîäåëè ïîñòðîåíû ãèñòîãðàììû ðàñïðåäåëåíèÿ ìàññ ñóïåð÷àñòèö q̃R è g̃. ÏÎØÓÊÈ SUSY ÍÀ LHC Ò.Â.Îáiõîä Ïîøóêè SUSY iç çáåðåæåííÿì R-ïîðíîñòi ïîâ'ÿçàíi ç LSP -÷àñòèíêîþ � êðàùèì êàíäèäàòîì òåìíî¨ ìàòåði¨. Âèêîðìñòàííÿ íîâèõ MSSM ïàðàìåòðiâ, îòðèìàíèõ iç îñòàííiõ åêñïåðèìåíòàëüíèõ äàíèõ íà LHC(CMS), ä๠ìîæëèâiñòü ðîçðàõóâàòè ìàñè, øèðèíè ðîçïàäiâ i ïåðåðiçè ïîðîäæåííÿ ñóïåð÷àñòè- íîê.  êîíòåêñòi MSSM ìîäåëi ïîáóäîâàíi ãiñòîãðàìè ðîçïîäiëó ìàñ ñóïåð÷àñòèíîê q̃R i g̃. 6