NLO corrections to the pair production of supersymmetric particles
The analysis of recent experimental data received from LHC (CMS) restricts the range of MSSM parameters. Using computer programs SOFTSUSY, SDECAY the mass spectrum and partial width of superpatners are calculated. With the help of computer program PROSPINO the calculations of the next-to-leading ord...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/80367 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | NLO corrections to the pair production of supersymmetric particles / T. V. Obikhod, A.A. Verbytskyy // Вопросы атомной науки и техники. — 2014. — № 5. — С. 7-11. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-80367 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-803672015-04-18T03:01:25Z NLO corrections to the pair production of supersymmetric particles Obikhod, T.V. Verbytskyy, A.A. Ядерная физика и элементарные частицы The analysis of recent experimental data received from LHC (CMS) restricts the range of MSSM parameters. Using computer programs SOFTSUSY, SDECAY the mass spectrum and partial width of superpatners are calculated. With the help of computer program PROSPINO the calculations of the next-to-leading order (NLO) corrections to the production cross sections of superpartners are made. With the help of computer program PYTHIA the NLO corrections on differential distributions of pT and η for squarks and gluino are represented. Анализ последних экспериментальных данных, полученных из БАК (КМС), ограничил пространство МССМ параметров. С помощью компьютерных программ SOFTSUSY, SDECAY посчитаны спектры масс и ширины распадов суперчастиц. Проведены расчеты next-to-leading order (NLO) поправок к поперечному сечению образования суперчастиц с помощью компьютерной программы PROSPINO. Представлены NLO поправки к дифференциальному сечению распределения по pT и η для скварков и глюино. Аналiз останнiх експериментальних даних отриманих на ВАК (КМС) звузив простiр МССМ параметрiв. За допомогою комп'ютерних програм SOFTSUSY, SDECAY розраховано спектри мас i ширини розпадiв суперчастинок. Проведено розрахунки next-to-leading order (NLO) поправок до поперечного перерiзу утворення суперчастiнок за допомогою комп'ютерної програми PROSPINO. Представлено NLO поправки до диференцiйного перерiзу розподiлу по pT i η для скваркiв i глюiно. 2014 Article NLO corrections to the pair production of supersymmetric particles / T. V. Obikhod, A.A. Verbytskyy // Вопросы атомной науки и техники. — 2014. — № 5. — С. 7-11. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 11.25.-w, 12.60.Jv, 02.10.Ws http://dspace.nbuv.gov.ua/handle/123456789/80367 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Ядерная физика и элементарные частицы Ядерная физика и элементарные частицы |
spellingShingle |
Ядерная физика и элементарные частицы Ядерная физика и элементарные частицы Obikhod, T.V. Verbytskyy, A.A. NLO corrections to the pair production of supersymmetric particles Вопросы атомной науки и техники |
description |
The analysis of recent experimental data received from LHC (CMS) restricts the range of MSSM parameters. Using computer programs SOFTSUSY, SDECAY the mass spectrum and partial width of superpatners are calculated. With the help of computer program PROSPINO the calculations of the next-to-leading order (NLO) corrections to the production cross sections of superpartners are made. With the help of computer program PYTHIA the NLO corrections on differential distributions of pT and η for squarks and gluino are represented. |
format |
Article |
author |
Obikhod, T.V. Verbytskyy, A.A. |
author_facet |
Obikhod, T.V. Verbytskyy, A.A. |
author_sort |
Obikhod, T.V. |
title |
NLO corrections to the pair production of supersymmetric particles |
title_short |
NLO corrections to the pair production of supersymmetric particles |
title_full |
NLO corrections to the pair production of supersymmetric particles |
title_fullStr |
NLO corrections to the pair production of supersymmetric particles |
title_full_unstemmed |
NLO corrections to the pair production of supersymmetric particles |
title_sort |
nlo corrections to the pair production of supersymmetric particles |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2014 |
topic_facet |
Ядерная физика и элементарные частицы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/80367 |
citation_txt |
NLO corrections to the pair production of supersymmetric particles / T. V. Obikhod, A.A. Verbytskyy // Вопросы атомной науки и техники. — 2014. — № 5. — С. 7-11. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT obikhodtv nlocorrectionstothepairproductionofsupersymmetricparticles AT verbytskyyaa nlocorrectionstothepairproductionofsupersymmetricparticles |
first_indexed |
2025-07-06T04:20:12Z |
last_indexed |
2025-07-06T04:20:12Z |
_version_ |
1836869865303965696 |
fulltext |
NLO CORRECTIONS TO THE PAIR PRODUCTION OF
SUPERSYMMETRIC PARTICLES
T.V.Obikhod ∗, A.A.Verbytskyy
Institute for Nuclear Research, NAS of Ukraine, 03680, Kiev, Ukraine
(Received March 3, 2014)
The analysis of recent experimental data received from LHC (CMS) restricts the range of MSSM parameters. Using
computer programs SOFTSUSY, SDECAY the mass spectrum and partial width of superpatners are calculated.
With the help of computer program PROSPINO the calculations of the next-to-leading order (NLO) corrections to
the production cross sections of superpartners are made. With the help of computer program PYTHIA the NLO
corrections on differential distributions of pT and η for squarks and gluino are represented.
PACS: 11.25.-w, 12.60.Jv, 02.10.Ws
1. INTRODUCTION
Supersymmetry played a most important role in the
development of theoretical physics and strongly in-
fluenced on experimental particle physics.
Supersymmetry first appeared in the context of
string theory as the symmetry of two-dimensional
world sheet theory [1]. Later it was realized that
it could be relevant to elementary particle physics
through the four-dimensional quantum field theory.
Why particle physicist consider supersymmetric
theories? There are several famous reasons:
• the vanishing or extreme smallness of the
cosmological constant;
• the hierarchy problem;
• dark matter candidate;
• gauge-coupling unification.
The simplest action that can be written down for
fermions, scalar fields and non-propagating complex
auxiliary field consists of kinetic energy terms [2]:
Lfree = −∂µϕ∗i∂µϕi + iψ+iσµ∂µψi + F ∗iFi ,
S =
∫
d4xLfree .
The renormalizable interactions for these fields, that
are invariant under supersymmetric transformations
are the following
Lint =
(
−1
2
W ijψiψj +W iFi
)
+ c.c. ,
where W i,j ,W i are polynomials in the scalar fields
ϕi, ϕ
∗i with degrees 1 and 2 respectively. It is possi-
ble to write
W ij =
δ2
δϕiδϕj
W ,
where
W = Liϕi +
1
2
M ijϕiϕj +
1
6
yijkϕiϕjϕk
is the superpotential. Here Li are parameters, which
affect the scalar potential part of the Lagrangian,M ij
is a symmetric mass matrix for the fermion fields,
and yijk is a Yukawa coupling of a scalar ϕk and two
fermions ψiψj that must be totally symmetric under
interchange of i, j, k. The Minimal Supersymmetric
Standard Model (MSSM) superpotential has the form
WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd.
The fields Hu, Hd, Q, L, u, d, e are chiral superfields
corresponding to the chiral supermultiplets. yu, yd, ye
are Yukawa coupling parameters
yu ≈
0 0 0
0 0 0
0 0 yt
, yd ≈
0 0 0
0 0 0
0 0 yb
,
ye ≈
0 0 0
0 0 0
0 0 yτ
.
The µ term is the supersymmetric version of the
Higgs boson mass. The models of spontaneous sym-
metry breaking should be soft (of positive mass di-
mension) in order to be able to naturally maintain
a hierarchy between the electroweak scale and the
Planck (or any other very large) mass scale. In
the Lagrangian of a general theory the possible soft
supersymmetry-breaking terms are
∗Corresponding author E-mail address: obikhod@kinr.kiev.ua
ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, N5 (93).
Series: Nuclear Physics Investigations (63), p.7-11.
7
Lsoft =
= −
(
1
2
Maλ
a
λ
a
+
1
6
a
ijk
ϕiϕjϕk + +
1
2
b
ij
ϕiϕj + t
i
ϕi
)
+ c.c. − (m
2
)
i
jϕ
j∗
ϕi, (1)
where Ma are gaugino masses, (m2)ij and bij are scalar
squared-mass terms, aijk and ti are couplings - scalar and
”tadpole”.
The advantage of the MSSM is the unification of
gauge couplings. The 1-loop RG equations for the gauge
couplings g1, g2, g3 are
βga ≡ d
dt
ga =
1
16π2
bag
3
a,
(b1, b2, b3) =
{
(41/10,−19/6,−7) Standard Model
(33/5, 1,−3) MSSM
where t = ln(Q/Q0), with Q the Renorm group (RG)
scale. The quantities α = g2a/4π run linearly with RG
scale at one-loop order:
d
dt
α−1
a = − ba
2π
(a = 1, 2, 3)
and can unify at a scale MU ∼ 2×1016 GeV. As this uni-
fication is not perfect, however, this small difference can
be corrected due to the application of the RG analysis
for MSSM model. The form of the renormalization group
equations with the parameters appearing in the superpo-
tential is the following
βyijk ≡ d
dt
yijk = γi
ny
njk + γj
ny
ink + γk
ny
ijn,
βMij ≡ d
dt
M ij = γi
nM
nj + γj
nM
in, (2)
βLi ≡ d
dt
Li = γi
nL
n,
where the γi
j are anomalous dimension matrices associ-
ated with the superfields. At 1-loop order
γi
j =
1
16π2
[
1
2
yimny∗
jmn − 2g2aCa(i)δ
i
j
]
,
where Ca(i) are the quadratic Casimir group theory in-
variants for the superfield Φi , defined in terms of the Lie
algebra generators T a by
(T aT a)ji = Ca(i)δ
j
i
with gauge couplings ga. For the MSSM supermultiplets
C3(i) =
{
4/3 for Φi = Q,u, d,
0 for Φi = L, e,Hu, Hd,
C2(i) =
{
3/4 for Φi = Q,L,Hu, Hd,
0 for Φi = u, d, e,
C1(i) =
{
3Y 2
i /5 for each Φi with weak hypercharge Yi.
The one-loop renormalization of gauge couplings has the
form
βga =
d
dt
ga =
1
16π2
g3a
[∑
i
Ia(i)− 3Ca(G)
]
,
where Ca(G) is the quadratic Casimir invariant of the
group, Ia(i) is the Dynkin index of the chiral supermulti-
plet ϕi . Putting RG equations for γi
j at the 1-loop order
into (2), we can receive the expressions of the running
superpotential parameters
βyt ≡
d
dt
yt =
yt
16π2
[
6y
∗
t yt + y
∗
b yb −
16
3
g
2
3 − 3g
2
2 −
13
15
g
2
1
]
,
βyb
≡
d
dt
yb =
yb
16π2
[
6y
∗
b yb + y
∗
t yt + y
∗
τyτ −
16
3
g
2
3 − 3g
2
2 −
7
15
g
2
1
]
,
βyτ ≡
d
dt
yτ =
yτ
16π2
[
4y
∗
τyτ + 3y
∗
b yb − 3g
2
2 −
9
5
g
2
1
]
,
βµ ≡
d
dt
µ =
µ
16π2
[
3y
∗
t yt + 3y
∗
b yb + y
∗
τyτ − 3g
2
2 −
3
5
g
2
1
]
.
The 1-loop renormalization group equations for the gaug-
ino mass parameters in the MSSM are determined by
βMa ≡ d
dt
Ma =
1
8π2
bag
2
aMa (ba = 33/5, 1,−3)
for a = 1, 2, 3. Near the scale Q = MU = 2 × 1016 GeV
gaugino masses unify with the value m1/2
M1
g21
=
M2
g22
=
M3
g23
=
m1/2
g2U
.
Our goal is to learn GUT theory at the GUT scale and
seeing which models are consistent with the experimental
data. At hadron colliders, sparticles can be produced in
pairs from parton collisions of QCD strength:
gg → g̃g̃,
gq → g̃q̃i,
qq → g̃g̃,
qq → q̃iq̃j .
The total hadronic cross-sections are obtained by inte-
grating the parton cross-sections over the parton distri-
butions fi in the proton/antiproton:
σ(ij → q̃, g̃) =
∫
dx1dx2fi(x1)fj(x2)σ
B
(ij → q̃, g̃; s = x1x2S),
where the total centre-of-mass energy of the collider is de-
noted by
√
s. Lowest-order (LO) partonic cross-sections
are the following [3]:
σ
B
(qiqj → q̃q̃) =
πα̂2
s
s
[
βq̃
(
−
4
9
−
4m4
−
9(m2
g̃
s + m4
−)
)
+
+
(
−
4
9
−
8m2
−
9s
)
L1
]
+
+δij
πα̂2
s
s
[
8m2
g̃
27(s + 2m2
−)
L1
]
,
σ
B
(qq → g̃g̃) =
πα2
s
s
βg̃
(
8
9
+
16m2
g̃
9s
)
+
+
παsα̂s
s
[
βg̃
(
−
4
3
−
8m2
−
3s
)
+
+
(
8m2
g̃
3s
+
8m4
−
3s2
)
L2
]
+
+
πα̂2
s
s
[
βg̃
(
32
27
+
32m4
−
27(m2
q̃
s + m4
−)
)
+
+
(
−
64m2
−
27s
−
8m2
g̃
27(s − 2m2
−)
)
L2
]
,
8
σ
B
(gg → g̃g̃) =
πα2
s
s
[
βg̃
(
−3 −
51m2
g̃
4s
)
+
+
(
−
9
4
−
9m2
g̃
s
+
9m4
g̃
s2
)
log
(
1 − βg̃
1 + βg̃
)]
,
σ
B
(qg → q̃g̃) =
παsα̂s
s
[
κ
s
(
−
7
9
−
32m2
−
9s
)
+
+
(
−
8m2
−
9s
+
2m2
q̃m
2
−
s2
+
8m4
−
9s2
)
L3 +
+
(
−1 −
2m2
−
s
+
2m2
q̃m
2
−
s2
)
L4
]
with
L1 = log
(
s+ 2m2
− − sβq̃
s+ 2m2
− + sβq̃
)
, L2 = log
(
s− 2m2
− − sβg̃
s− 2m2
− + sβg̃
)
,
L3 = log
(
s−m2
− − κ
s−m2
− + κ
)
, L4 = log
(
s+m2
− − κ
s+m2
− + κ
)
,
βq̃ =
√
1−
4m2
q̃
s
, βg̃ =
√
1−
4m2
g̃
s
,
m2
− = m2
g̃ −m2
q̃, κ =
√
(s−m2
g̃ −m2
q̃)
2 − 4m2
g̃m
2
q̃ ,
αs =
g2s
4π
, α̂s =
ĝ2s
4π
.
The momenta of the two partons in the initial states are
denoted by k1 and k2, s = (k1 + k2)
2 - kinematical invari-
ant, gs - Yukawa couplings.
Squarks and gluinos can be produced at the LHC,
if their masses are in the accessible range. The LO
cross sections and NLO corrections in SUSY-QCD can be
calculated with the computer program PROSPINO [4].
The next-to-leading order (NLO) strong supersymmet-
ric Quantum chromodynamics (SUSY-QCD) corrections
increase the cross-sections for the various production pro-
cesses with respect to the leading-order (LO) predictions
and reduce the dependence on the renormalization and
factorization scale significantly [5, 6].
According to the experimental data [7] with the ob-
served and exclusion limits in the (m0,m1/2) plane for
tanβ = 10 and A0 = 0, calculated with SUSY in final
states with missing transverse energy and 0,1,2,or ≥ 3
b-quark jets in 7 TeV pp collisions we can consider two
sets of input parameters for SUSY at the LHC in Table 1
Table 1. The input parameters for two mSUGRA
scenarios
m0, GeV m1/2, GeV A0, GeV tanβ sgn(µ)
I 800 650 0 10 +1
II 1300 425 0 10 +1
For calculation the mass spectra was used SOFT-
SUSY program [8]. The masses are listed in Table 2.
Table 2. The masses of superparticles (GeV)
mũL
mũR
m
d̃L
m
d̃R
mg̃ m
χ̃0
1
I 1546 1504 1548 1500 1498 272
II 1552 1538 1554 1536 1053 176
With the help of computer program SDECAY [9] we
can calculate branching ratios (BR) for superparti-
cles. In Table 3 we will show the decays of the pro-
duced squarks with the shortest ’cascade’, q̃ → qχ̃0
1
Table 3. The branching ratios for the decay q̃ → qχ̃0
1
for the two scenarios
ũL → uχ̃0
1 ũR → uχ̃0
1 d̃L → dχ̃0
1 d̃R → dχ̃0
1
I 0.012 0.997 0.015 0.997
II 0.003 0.095 0.005 0.026
It can be seen that BR is larger for the first scenario I
and BR for q̃L is quite small. Using the parameter set
of Table 1 it is possible to calculate production cross
sections of superpartners by application of the computer
program PROSPINO. These cross sections at the center-
of-mass energy
√
s = 14 TeV are shown in Table 4.
Table 4. LO and NLO cross sections (pb) and
K-factors for superpartners
channel σ
Prospino
LO
σ
Prospino
NLO
KProspino
I squark-squark 0.397E-01 0.469E-01 1.1788
squark-gluino 0.434E-01 0.678E-01 1.5616
gluino-gluino 0.462E-02 0.127E-01 2.7549
II squark-squark 0.406E-01 0.511E-01 1.2601
squark-gluino 0.163 0.264 1.6130
gluino-gluino 0.988E-01 0.230 2.3269
The computations of NLO cross sections for SUSY par-
ticles at hadron collider are made with some simpli-
fications. The NLO corrections are always summed
over the subchannels assumming a common mass for
all squarks. The K-factor, i.e. the ratio between
the NLO and LO cross section K = σNLO
σLO
is deter-
mined for the total cross section, with all subchan-
nels summed up. With the help of computer pro-
gram PYTHIA [10] we can represent NLO corrections
on differential distributions. Fig.1 displays this distri-
bution, normalized with the appropriate cross section.
Fig.1. Normalized pq̃T distribution for the first scenario
with the center-of-mass energy of 14 TeV
For both scenarios we also calculated the NLO results
and received several distributions of inclusive quantities:
the transverse momentum pT , the pseudorapidity η for
both squarks and gluino (Figs. 2 - 9).
Fig.2. pT distribution with NLO corrections for squarks
(first scenario)
9
Fig.3. pT distribution with NLO corrections for gluino
(first scenario)
Fig.4. η distribution with NLO corrections for squarks
(first scenario)
Fig.5. η distribution with NLO corrections for gluino
(first scenario)
Fig.6. pT distribution with NLO corrections for squarks
(second scenario)
Fig.7. pT distribution with NLO corrections for gluino
(second scenario)
Fig.8. η distribution with NLO corrections for squarks
(second scenario)
Fig.9. η distribution with NLO corrections for gluino
(second scenario)
6. CONCLUSIONS
Supersymmetry is probably the best motivated scenario
today for physics beyond the SM and has been the object
of intense searches at high-energy collider. We have used
different analysis methods for clarification of the experi-
mental strategies in searches for SUSY at the LHC. For
the interpretation of the experimental data precise theo-
retical predictions are of great importance. The present
paper contributes to this effort by providing NLO cor-
rections to the pair production of squarks and gluinos
of the first two generations in a Monte Carlo programs.
Current and future LHC data for searching physics be-
yond the Standard Model requires theoretical prediction
for observables, including distributions and cross sections
with kinematical cuts. The results presented in this paper
provide a diffrential description of supersymmetric parti-
cle production and decay, and should form the theoretical
basis for experiments at the LHC in future.
10
References
1. A.Bilal. Introduction to Supersymmetry //
arXiv:hep-th/0101055v1.
2. S.P.Martin. A Supersymmetry Primer // arXiv:hep-
ph/9709356.
3. G.L.Kane, J.P. Leveille. Experimental constraints on
gluino masses and supersymmetric theories // Phys.
Lett. 1982, v. B112, p. 227-332.
4. W.Beenakker, R.Hopker, M. Spira. PROSPINO: A
Program for the production of supersymmetric par-
ticles in next-to-leading order QCD // arXiv:hep-
ph/9611232.
5. W.Beenakker, R.Hopker, M. Spira, P.M. Zerwas.
Squark Production at the Fermilab Tevatron // Phys.
Rev. Lett. 1995, v. 74, p. 2905-2908.
6. W.Beenakker, R.Hopker, M. Spira, P.M. Zerwas.
Squark and Gluino Production at Hadron Colliders
// arXiv:hep-ph/9610490.
7. The CMS Collaboration. Search for supersymmetry
in final states with missing transverse energy and 0,
1, 2, or ≥ 3 b-quark jets in 7 TeV pp collisions using
the variable αT // arXiv: 1210.8115 [hep-ex].
8. B.C.Allanach. SOFTSUSY2.0: a program for cal-
culating supersymmetric spectra // Comput. Phys.
Commun. 2002, v. 143, p. 305-331.
9. M.Muhlleitner, A.Djouadi, Y.Mambrini. SDECAY:
a fortran code for the decays of the supersymmetric
particles in the MSSM // Comput. Phys. Commun.
2005, v. 168, p. 46-70.
10. T. Sjostrand, S.Mrenna, P. Skands. PYTHIA 6.4
Physics and Manual // JHEP 2006, v. 05, p. 1-26.
NLO ÊÎÐÐÅÊÖÈÈ Ê ÎÁÐÀÇÎÂÀÍÈÞ ÏÀÐÛ ÑÓÏÅÐÑÈÌÌÅÒÐÈ×ÍÛÕ ×ÀÑÒÈÖ
Ò.Â.Îáèõîä, À.À.Âåðáèöêèé
Àíàëèç ïîñëåäíèõ ýêñïåðèìåíòàëüíûõ äàííûõ, ïîëó÷åííûõ èç ÁÀÊ (ÊÌÑ), îãðàíè÷èë ïðîñòðàíñòâî
ÌÑÑÌ ïàðàìåòðîâ. Ñ ïîìîùüþ êîìïüþòåðíûõ ïðîãðàìì SOFTSUSY, SDECAY ïîñ÷èòàíû ñïåêòðû
ìàññ è øèðèíû ðàñïàäîâ ñóïåð÷àñòèö. Ïðîâåäåíû ðàñ÷åòû next-to-leading order (NLO) ïîïðàâîê ê
ïîïåðå÷íîìó ñå÷åíèþ îáðàçîâàíèÿ ñóïåð÷àñòèö ñ ïîìîùüþ êîìïüþòåðíîé ïðîãðàììû PROSPINO.
Ïðåäñòàâëåíû NLO ïîïðàâêè ê äèôôåðåíöèàëüíîìó ñå÷åíèþ ðàñïðåäåëåíèÿ ïî pT è η äëÿ ñêâàðêîâ
è ãëþèíî.
NLO ÊÎÐÐÅÊÖI� ÄÎ ÓÒÂÎÐÅÍÍß ÏÀÐÛ ÑÓÏÅÐÑÈÌÅÒÐÈ×ÍÈÕ ×ÀÑÒÈÍÎÊ
Ò.Â.Îáiõîä, À.Î.Âåðáèöüêèé
Àíàëiç îñòàííiõ åêñïåðèìåíòàëüíèõ äàíèõ îòðèìàíèõ íà ÂÀÊ (ÊÌÑ) çâóçèâ ïðîñòið ÌÑÑÌ ïàðàìåò-
ðiâ. Çà äîïîìîãîþ êîìï'þòåðíèõ ïðîãðàì SOFTSUSY, SDECAY ðîçðàõîâàíî ñïåêòðè ìàñ i øèðèíè
ðîçïàäiâ ñóïåð÷àñòèíîê. Ïðîâåäåíî ðîçðàõóíêè next-to-leading order (NLO) ïîïðàâîê äî ïîïåðå÷íî-
ãî ïåðåðiçó óòâîðåííÿ ñóïåð÷àñòiíîê çà äîïîìîãîþ êîìï'þòåðíî¨ ïðîãðàìè PROSPINO. Ïðåäñòàâëåíî
NLO ïîïðàâêè äî äèôåðåíöiéíîãî ïåðåðiçó ðîçïîäiëó ïî pT i η äëÿ ñêâàðêiâ i ãëþiíî.
11
|