Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt

The corrosion of nickel-molybdenum alloys and their constituents in a molten eutectic sodium fluoride-zirconium fluoride mixture has been studied by cyclic voltammetry, X-ray analysis, SEM and metallography. The dependence of the corrosion rate of nickel-molybdenum alloys in molten fluorides on the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Azhazha, V.M., Andriiko, A.A., Bakai, A.S., Volkov, S.V., Devyatkin, S.V., Dovbnya, A.N., Lavrinenko, S.D., Omelchuk, A.A., Shirokov, B.M., Shmegera, R.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/80546
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt / V.M. Azhazha, А.А. Аndriiko, А.S. Bakai,S.V. Volkov, S.V. Devyatkin, А.N. Dovbnya, S.D. Lavrinenko, А.А. Omelchuk, B.M. Shirokov, R.S. Shmegera // Вопросы атомной науки и техники. — 2005. — № 4. — С. 67-73. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80546
record_format dspace
spelling irk-123456789-805462016-04-14T10:19:59Z Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt Azhazha, V.M. Andriiko, A.A. Bakai, A.S. Volkov, S.V. Devyatkin, S.V. Dovbnya, A.N. Lavrinenko, S.D. Omelchuk, A.A. Shirokov, B.M. Shmegera, R.S. The corrosion of nickel-molybdenum alloys and their constituents in a molten eutectic sodium fluoride-zirconium fluoride mixture has been studied by cyclic voltammetry, X-ray analysis, SEM and metallography. The dependence of the corrosion rate of nickel-molybdenum alloys in molten fluorides on the time of soaking in melt and irradiation with an electron beam on an electron accelerator has been investigated. It has been shown that increasing the time of contact of nickel-molybdenum alloys with fluoride melt decreases the corrosion current density, and irradiation increases it in the greater extent the higher the electron beam energy. Intercrystalline corrosion is typical of the alloys of this composition. Методами циклічної вольтамперометрії, рентгенофазового, мікроскопічного аналізів, а також металографії досліджена корозія нікель-молібденових сплавів та компонентів, які входять до їхнього складу, в розплавленій евтектичній суміші фторидів натрію та цирконію. Досліджена залежність швидкості корозії зазначених сплавів від тривалості витримки в розплаві та опромінення пучком електронів на електронному прискорювачі. Показано, що збільшення тривалості контакту нікель-молібденових сплавів з фторидним розплавом зменшує густину струму корозії, а опромінення – збільшує її в тим більшій мірі, чим більша енергія електронного пучка. Для сплавів даного складу характерна міжкристалітна корозія. Методами циклической вольтамперометрии, рентгенофазового, микроскопического анализов, а также металлографии изучена коррозия никель-молибденовых сплавов и составляющих компонентов в расплавленной эвтектической смеси фторидов натрия и циркония. Исследована зависимость скорости коррозии никель-молибденовых сплавов в расплавленных фторидах от времени выдержки в расплаве и облучения пучком электронов на электронном ускорителе. Показано, что увеличение времени контакта никель-молибденовых сплавов с фторидным расплавом уменьшает плотность тока коррозии, а облучение – увеличивает ее в тем большей мере, чем больше энергия электронного пучка. Для сплавов данного состава характерна межкристаллитная коррозия. 2005 Article Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt / V.M. Azhazha, А.А. Аndriiko, А.S. Bakai,S.V. Volkov, S.V. Devyatkin, А.N. Dovbnya, S.D. Lavrinenko, А.А. Omelchuk, B.M. Shirokov, R.S. Shmegera // Вопросы атомной науки и техники. — 2005. — № 4. — С. 67-73. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS 61.80-X; 81-40-WX http://dspace.nbuv.gov.ua/handle/123456789/80546 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The corrosion of nickel-molybdenum alloys and their constituents in a molten eutectic sodium fluoride-zirconium fluoride mixture has been studied by cyclic voltammetry, X-ray analysis, SEM and metallography. The dependence of the corrosion rate of nickel-molybdenum alloys in molten fluorides on the time of soaking in melt and irradiation with an electron beam on an electron accelerator has been investigated. It has been shown that increasing the time of contact of nickel-molybdenum alloys with fluoride melt decreases the corrosion current density, and irradiation increases it in the greater extent the higher the electron beam energy. Intercrystalline corrosion is typical of the alloys of this composition.
format Article
author Azhazha, V.M.
Andriiko, A.A.
Bakai, A.S.
Volkov, S.V.
Devyatkin, S.V.
Dovbnya, A.N.
Lavrinenko, S.D.
Omelchuk, A.A.
Shirokov, B.M.
Shmegera, R.S.
spellingShingle Azhazha, V.M.
Andriiko, A.A.
Bakai, A.S.
Volkov, S.V.
Devyatkin, S.V.
Dovbnya, A.N.
Lavrinenko, S.D.
Omelchuk, A.A.
Shirokov, B.M.
Shmegera, R.S.
Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt
Вопросы атомной науки и техники
author_facet Azhazha, V.M.
Andriiko, A.A.
Bakai, A.S.
Volkov, S.V.
Devyatkin, S.V.
Dovbnya, A.N.
Lavrinenko, S.D.
Omelchuk, A.A.
Shirokov, B.M.
Shmegera, R.S.
author_sort Azhazha, V.M.
title Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt
title_short Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt
title_full Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt
title_fullStr Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt
title_full_unstemmed Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt
title_sort corrosion of irradiated ni-mo alloys in sodium fluoride - zirconium melt
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/80546
citation_txt Corrosion of irradiated Ni-Mo alloys in sodium fluoride - zirconium melt / V.M. Azhazha, А.А. Аndriiko, А.S. Bakai,S.V. Volkov, S.V. Devyatkin, А.N. Dovbnya, S.D. Lavrinenko, А.А. Omelchuk, B.M. Shirokov, R.S. Shmegera // Вопросы атомной науки и техники. — 2005. — № 4. — С. 67-73. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT azhazhavm corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT andriikoaa corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT bakaias corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT volkovsv corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT devyatkinsv corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT dovbnyaan corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT lavrinenkosd corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT omelchukaa corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT shirokovbm corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
AT shmegerars corrosionofirradiatednimoalloysinsodiumfluoridezirconiummelt
first_indexed 2025-07-06T04:33:16Z
last_indexed 2025-07-06T04:33:16Z
_version_ 1836870687476678656
fulltext PACS 61.80-X; 81-40-WX CORROSION OF IRRADIATED Ni-Mo ALLOYS IN SODIUM FLUO­ RIDE - ZIRCONIUM FLUORIDE MELT V.M. Azhazha1, А.А. Аndriiko2, А.S. Bakai1,S.V. Volkov3, S.V. Devyatkin3, А.N. Dovbnya1, S.D. Lavrinenko1, А.А. Omelchuk3, B.M. Shirokov1, R.S. Shmegera 3 1National Science Center Kharkov Institute of Physics and Technology, Akademicheskaya str. 1, 61106 Kharkov, Ukraine, e-mail: bakai@kipt.kharkov.ua; 2National Technical University “KPI”, Department of Chemistry, Pobedy avenue 37, 03056 Kiev-56, Ukraine, e-mail: andriiko@xtf.ntu-kpi.kiev.ua; 3Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Science, Palladin avenue 32/34, 03680 Kiev 142,Ukraine, e-mail: devyatkin@ion­ c.kar.net, omelchuk@ionc.kar.net The corrosion of nickel-molybdenum alloys and their constituents in a molten eutectic sodium fluoride-zirconi­ um fluoride mixture has been studied by cyclic voltammetry, X-ray analysis, SEM and metallography. The depen­ dence of the corrosion rate of nickel-molybdenum alloys in molten fluorides on the time of soaking in melt and irra­ diation with an electron beam on an electron accelerator has been investigated. It has been shown that increasing the time of contact of nickel-molybdenum alloys with fluoride melt decreases the corrosion current density, and irradia­ tion increases it in the greater extent the higher the electron beam energy. Intercrystalline corrosion is typical of the alloys of this composition. INTRODUCTION Nickel- and molybdenum- base alloys, which are known as Hastelloy (commercial name), have been widely used in various branches of science and technol­ ogy, in particular in accelerator-driven nuclear reactors, which operate on molten salt fuel compositions [1]. The development of methods for the control of the corrosion resistance of these alloys to fluoride melts and the eluci­ dation of the effect of different factors (radiation expo­ sure, alloy composition, time of contact with molten salts, etc) on corrosion rate are important not only scien­ tific but also practical tasks since they make it possible to determine the critical service life of structural materi­ als. This paper presents results of determining the corro­ sion rate of nickel-molybdenum alloys by cyclic voltammetry in a molten eutectic sodium fluoride-zirco­ nium fluoride mixture. This mixture is resistant to ra­ dioactive irradiation and is recommended as a carrier of isotopes that are to be transmuted in accelerator-driven nuclear reactors. The corrosion resistance of nickel- molybdenum alloys of different composition at different time of contact with fluoride melt under different elec­ tron beam irradiation conditions was investigated. The results of estimating the corrosion rate of individual al­ loy constituents (nickel, molybdenum, iron, niobium, chromium) and the change in the mechanical properties of the alloys under investigation, which has been carried out by nanoindentation analysis, are given [2]. EXPERIMENTAL Two alloys of Hastelloy-N type of the following composition (Table 1) were prepared and investigated. Table 1 Chemical composition of nickel-molybdenum alloys Alloy Chemical composition, wt.% Ni Mo Cr Fe Ti Al Other elements composition A base 11…12 6.5…7.5 ≤1.5 ≤ 0.5 ≤ 0.8 Mn<0.5; Si<0.15; composition B base 11…12 6.2…7.2 ≤1.5 ≤ 0.5 ≤ 0.8 Mn<0.5; Si<0.15; Nb-0.5; Y-0.05 The difference in the chemical composition of these alloys was that in the alloys of composition A, 0.3 wt. % chromium was replaced by niobium, and 0.05 wt. % yt­ trium was added (composition B). To fabricate the alloys of the chosen composition, the high-purity initial components were used with a low content of interstitial impurities. The basic components of the alloys were nickel, molybdenum chromium, iron, titanium, niobium, manganese that were refined from undesirable impurities, using the physical techniques. Since those metals have very different properties, it is utterly impossible to remove impurities from them, using only one technique. Refining of nickel, molybde­ num, niobium, titanium and iron warranted employment of the electron-beam melting (EBM) technique. Refin­ ing of chromium and aluminum made for high-vacuum ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 67 mailto:bakai@kipt.kharkov.ua annealing. Refining of manganese was made by the vac­ uum distillation method. The alloy metal component re­ fining resulted in the following information. Nickel. The EBM was made in the ultra-high-vacu­ um facility “UPM-1” [3,4]. The vacuum system of the facility is composed two diffusion vapor oil pumps with the nitrogen protection and two getter ion pumps “GIN- 5”. The boundary vacuum of the facility is 10-6 Pa, the vacuum maintained within the limits of 10-2…10-5 Pa in the course of the casting. The casting was made via the classic alloy dot-remelting method in the following way: heating>melting>casting> crystallization. Elec­ trolytic nickel was used as initial material that called for double EBM. Schematic of the EBM facility is given in Fig. 1. In the course of the EBM, the process began of gas release from nickel at different stages of the casting. To monitor the process, the mass-spectrometer “МХ- 7304А” was used connected to the facility through a de­ vice named “Dilutor” [6]. The element composition of the processed nickel and metal upon completion of the EBM was measured, using “ЕhMAL-2” energy mass- analyzer. The EBM refinement resulted in production of high- purity nickel samples. The content of the main impuri­ ties in nickel samples prior to and after the EBM is giv­ en in Table 2. 1. Fig. 1. Schematic of EBM facility, using the oil-free pumping system: 1 – facility frame; 2 – electron beam gun; 3 – bending magnet system; 4 – remeltable electrode; 5 – ingot; 6 – crystallizer; 7, 8 – electrode positioning mechanism; 9,10 – electrode withdrawal mechanism; 11 – getter ion pump; 12 – dif­ fusion pump; 13 – pre-evacuation pump; 14-20 – vacuum gates; 21 – manometric gauges Table 2 Content of impurities in initial and post-EBM nickel samples Impurity, wt.% Fe Co Si Cu As Sb P Bi Initial 0,002 0,0026 0,00003 0,0017 0,00004 0,00003 0,0001 0,00004 Post 2nd EBM 0,0017 0,0009 0,00003 0,0017 0,00001 0,00003 0,00007 0,00004 Impurity, wt.% Zn Sn Al Pb Cd Mg Se Cl Initial 0,0041 0,00005 0,00009 0,00007 0,00005 0,00005 0,0014 0,0005 Post 2nd EBM 0,0008 0,00005 0,00006 0,00007 0,00005 0,00004 0,00027 0,0002 As a result of the refinement, there was a decrease in the content of iron, cobalt, phosphorus, aluminum, mag­ nesium; the content of arsenic, zinc, selenium and chlo­ rine decreased considerably. The double EBM resulted in production of nickel with the purity 99.994 wt. % [4]. The examination of nickel microstructure upon com­ pletion of the EBM indicated that it differed substantial­ ly from structure of the initial metal. An agglomeration of impurities was observable in nickel after the first re- melting on the grain boundaries that was absent after the second EBM re-melting, which bespeaks the effective­ ness of nickel refinement, using the EBM. Molybdenum. After the EBM, the content of metal impurities decreased 10-to-30-fold. The removal of sili­ con was insignificant. Tungsten impurities were not re­ movable. The principal purification was made of the gaseous impurities: oxygen, nitrogen and hydrogen. Niobium. The initial material for the casting was niobium of the brand “NB-1”. The content of metal im­ purities in niobium after two consecutive EBMs was as follows: Al – 0,004; Fe – 0,0001; Cr < 0,001; Ni < 0,0004; Si – 0,005; Cu – 0,0006; Ca < 0,003 wt. %. Titanium. The initial material for the casting was ti­ tanium sponge “ТG-90”. A titanium ingot with the puri­ ty 99.99 wt.% was produced via the EBM method. Iron. Armco iron rods were used as initial material for the casting. The EBM of iron was carried out via the alloy dot-remelting. The Brinelle hardness of initial Armco iron rods was 830 MPa, decreasing to 624 MPa after the remelting. The iron purity level was deter­ mined to a considerable degree by the content of nickel and cobalt. Chromium. The main impurities in chromium were iron, silicon, aluminum, nickel and interstitial impurities ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 68 (nitrogen, oxygen and carbon). High-vacuum annealing of chromium samples at the temperature 1200 °С for 5 hours resulted in a decreased content of the interstitial impurities, probably, by 10 times. In order to introduce the volatile components into the alloy, aluminum and manganese, in a more assured way, the arc casting facility was used priorly to obtain manganese-aluminum alloys. The voltammetric investigations were carried out in hermetically sealed reactors made of stainless steel un­ der dry argon in a three-electrode electrolytic cell by cyclic voltammetry on a PC controlled potentiostat “Elektroflex” type EF 453. A ZrF4(49.5 mol. %)-NaF (50.5 mol. %) melt was used as the electrolyte. The melt was placed in a glassy carbon crucible, which was used as the auxiliary electrode. The working electrodes were samples of Hastelloy (compositions (A and B) heat- treated under different conditions in a molten NaF–ZrF4 at 650 °C (100…700 hours) and the alloys constituents (Ni, Fe, Mo, Cr, Nb). The potential sweep rate at the working electrode was 10 mV/s. The working electrode potential was recorded with respect to an unpolarized glassy carbon electrode. Samples of alloys which were subjected in a melt of the above composition to a long (700 hours) irradiation at 650 °C on a LUE-10 (LINAC-10) linear electron ac­ celerator with 10 MeV energy and 5 kW power (current density 0.5 mA/cm2) were also investigated. To assess the effect of electron irradiance on nickel- molybdenum alloys, 6 specimens of alloy of preset composition were put in each ampule made of a carbon- carbon composite filled with a molten eutectic sodium fluoride- zirconium fluoride mixture. The electron beam energy at the entrance to the first sample was estimated to be 5066 eV/atom and at the exit from the last sample 64 eV/atom [5]. Corrosion current at different surfaces of the same sample (electron beam entry-exit) were also estimated. To this end, one of the surfaces of the alloy under investigation was covered with boron nitride paste. The mechanical investigations were carried out by the nanoindentation method on a Nano Indenter – II de­ vice (MTS System) [2]. RESULTS AND DISCUSSION The corrosion rate is determined by metal (Mi) an­ odic dissolution current: Mi 0 → Mi n+ + ne- (1) and can be calculated if the metal (My) ion cathodic re­ duction current is known: My m+ + ne- → My (m-n)+ (2) provided that the total current traversing the cell is zero [6]. Since the experiments were performed in an inert atmosphere, the only cathodic depolarizer (oxidant) in the fluoride melt under investigation can be ions of zir­ conium or one of the alloy constituents that transferred into the melt by the exchange reaction: zMx 0 + aZrF4 → zMxFa + aZrF4-z . (3) The investigation carried out showed that almost all voltammograms exhibit in the cathodic region a wave which precedes zirconium ion discharge (Fig. 2), there­ fore the portion of the voltammetric curve (section ac) corresponding to the cathodic process at the most posi­ tive potential was employed in the calculations of the corrosion rate of the samples under investigation. In the anodic region, all voltammograms exhibited a wave of anodic dissolution of the sample under investigation (section ab), which was followed by a current drop (sec­ tion bd, due to a surface passivation) followed by an in­ crease in current (section df due to a pit formation). To calculate the corrosion current of the samples under in­ vestigation in the anodic region, the initial portion of the voltammetric curve (section ab) was used. Fig. 2. Voltammogram of a nickel-molybdenum alloy (composition B, sample 120) in a molten eutectic sodi­ um fluoride-zirconium fluoride mixture at 650 0C Examination of the anodic (section ab) and cathodic (section ac) branches of volammograms in semilog co­ ordinates allows one to determine the conditions under which the total current traversing the cell is zero and to calculate the corrosion current density of the sample un­ der investigation (Fig. 3). Fig. 3. Calculation of the corrosion current density of a sample of alloy of composition A after 400 hours of isothermal soaking in a sodium fluoride-zirconium flu­ oride melt at 650 °C Knowing the corrosion current density, one can cal­ culate the corrosion rate K m= ic AM nF (g/m2⋅h) or K k= K m d M (mm/yr) [6], where AM is the atomic mass of metal, n is the number of electrons involved in the ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 69 electrode process, F is Faraday constant, dM is the densi­ ty of the metal under investigation. The investigations carried out showed that the cur­ rent rise on the anodic branch (section ab) of voltammo­ grams of nickel-molybdenum alloys is observed in the potential range corresponding to nickel ionization in flu­ oride melts [7], and that the number of electrons in­ volved in the electrode process is two. Therefore in the calculations of the corrosion rate of these alloys we as­ sumed that n=2, and that AM and dM are the atomic mass and density of nickel respectively. An examination of the voltammograms obtained showed that iron ioniza­ tion is a two-electron process, chromium ionization a three-electron process, niobium ionization a five-elec­ tron process, and molybdenum ionization a six-electron process. The results of the calculation of corrosion rates are listed in Table 3. Table 3 Corrosion rate of nickel-molybdenum alloys and their constituents Sample Corrosion current densi­ ty ic,mA/cm2 Corrosion rate Km, g/m2⋅h Kk, mm/yr Notes Composition A 0.07 0.77 0.76 Without heat treatment Composition A 0.017 0.19 0.18 After heat treatment Composition A 0.023 0.25 0.25 100 h of isothermal soaking in a fluoride melt at 650°С without irradiation –«»– 0.01 0.11 0.11 200 h –«»– –«»– 0.006 0.066 0.065 500 h–«»– –«»– 0.00002 0.0002 0.0002 700 h–«»– Composition B 0.026 0.29 0.28 404 h of isothermal soaking in a fluoride melt at 650°С Composition A 0.018 0.20 0.19 700 h of isothermal soaking in a fluoride melt at 650°С in the case of irradiation with an electron beam(5066 eV/atom) Composition A 0.0074 0.081 0.080 –«»– 64 eV/atom Composition B 0.02 0.22 0.22 –«»– 5066 eV/atom Composition B 0.0004 0.0044 0.0043 –«»– 64 eV/atom Mo 0.0016 0.0095 0.008 Without heat treatment Ni 0.025 0.27 0.27 –«»– Fe 5.2 54.2 60.37 –«»– Nb 9.5 107.0 67.47 –«»– Cr 1000 6466.3 7911.3 –«»– From the data obtained it follows that the corrosion resistance of the metals investigated decreases in the or­ der: Mo, Hastelloy, Ni, Fe, Nb, Cr. The corrosion rate of Hastelloy (composition A and B) depends on the time of contact with fluoride melt and is the lower the longer the time of isothermal soaking in the melt. This is due to the fact that corrosion products appear at the interface with time, which shift the stationary potential towards more positive values. Besides, the corrosion products formed passivate the surface of the samples under inves­ tigation. The surface passivation of Hastelloy is evi­ denced by the shape of voltammograms in the range of high anodic potential values (Fig. 2). It was noted that the section df, which characterizes the presence of pit­ ting corrosion, is found not in all voltammograms. This section is absent on voltammograms of the samples that underwent preliminary heat treatment (Fig. 4, curve 2) and long isothermal soaking in a molten sodium fluoride -zirconium fluoride mixture (Fig. 4, curves 3 and 4). Fig. 4. Voltammograms of Hastelloy (composition A) at different heat treatment conditions: (1) without heat treatment, (2,3,4) after heat treatment: the time of isothermal soaking in a molten eutectic sodium fluo­ ride-zirconium fluoride mixture at 650 °C is 0, 100 and 500 h respectively The voltammograms of the samples that did not un­ dergo heat treatment exhibit no passivation region (curve 1) even after reaching current densities of over 4 A/cm2. The heat treatment sequence and conditions were as follows: heating and soaking for an hour at 1100 °C, water quenching at room temperature, anneal­ ing at 675 °C for 50 h under argon. It is non-adherence to the heat treatment conditions that is apparently re­ sponsible for the appearance of df sections (pitting dis­ solution), which were found for individual samples of compositions A and B (samples 24, 120, 106). The samples that were subjected to long electron beam irradiation in a molten eutectic sodium fluoride- zirconium fluoride mixture also retain the passivity re­ gion (Fig. 5); it was noted, however, that the potential range with the lowest current density is the narrower the more intense the irradiation to which the samples were subjected. ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 70 Fig. 5. Voltammograms of Hasteloy (composition A) after irradiation with an electron beam with energy: 1 – 5066 eV/atom; 2 – 64 eV/atom in a molten eutectic sodium fluoride-zirconium fluoride mixture at 650 °C for 700 h The investigations carried out showed that the voltammetric method enables one to assess the influ­ ence of the electron beam irradiance of samples in a flu­ oride melt. For example, when a sample of composition B is irradiated with an electron beam with an energy of 5066 eV/atom in a fluoride melt at 650 °C for 700h, the corrosion current density is 0.02 mA/cm2, and at 64 eV/atom it is 0.0004 mA/cm2. It was noted that the surfaces of the same sample are characterized by different corrosion rates. At the en­ trance of electron beam to a Hastelloy plate 0,3 mm in thickness, the corrosion current density is on an average an order of magnitude higher than that at the exit. For example, if one of the surfaces of the sample under in­ vestigation is coated with boron nitride, and a voltam­ mogram of the uncoated surface is recorded, the corro­ sion rate at the entrance of electron beam (5066 eV/atom) for the sample of composition B is esti­ mated to be 0,17 mA/cm2 and at the exit 0,01 mA/cm2. The dependence of the corrosion rate of samples on the heat treatment conditions, the presence of passiva­ tion regions in the anodic potential range, and the ab­ sence of pronounced pit formation regions allow one to conclude that the corrosion of these alloys is of inter­ crystalline character. This conclusion agrees with the re­ sults of X-ray phase analysis and metallography. Ac­ cording to the results of an X-ray phase analysis, the diffractograms of alloys of compositions A and B, which underwent only the above heat treatment without contact with the molten sodium fluoride-zirconium fluo­ ride mixture, exhibited only the beginning of formation of phases that are high in nickel (low-intensity lines of < 5%) of the intensity of line (111) due to the nickel base with d=2.10…2.11 Е (Ni3Mo of orthorhombic system) and d=1.84…1.88 Е (Ni3(Al,Ti) of cubic system)). Isothermal soaking in fluoride melts at 650 °C increases the overall annealing (aging) time of the alloy and makes for a change in its structure and appearance of various secondary phases. After isothermal soaking in a fluoride melt for more than 100 h, the secondary phases NiAl, Ni2Al3, NiCr are identified. The secondary phases manifest themselves most clearly after 500- hour soak­ ing in a fluoride melt. The phase Ni3Mo is most dis­ cernible in the alloy. In the samples subjected to irradia­ tion in a fluoride melt, only the phase Ni3Mo is identi­ fied most clearly. The results of an X-ray phase analysis make it possi­ ble in a certain measure to explain the relation between the observed corrosion rates and heat treatment condi­ tions. The alloy sample (Fig. 4, curve 1) not subjected to heat treatment is virtually a homogeneous alloy (solid solution), whose constituents retain individual electro­ chemical properties, i.e. the alloy constituents with the most negative potential (Al, Ti, Cr, Fe, etc) must dis­ solve in the first place, and the constituents with more positive electrode potential (Ni, Mo) must accumulate as adatoms on the surface. It was shown above (Figs. 2,3) that the equilibrium potential of the base of the al­ loy (nickel) is more positive than the alloy corrosion po­ tential (-210 mV). In this case, nickel microcrystals may form on the alloy surface owing to the high mobility of adatoms; these crystals, however, do not create dense homogeneous coating and do not make for its passiva­ tion. On the contrary, the alloy corrosion rate must even increase due to the formation of the galvanic couple nickel-metal with a high negative potential (Cr, Fe). The trend of the recorded voltammetric curve (Fig. 4, curve 1) speaks in favor of this corrosion mechanism. Even at high current densities (>4 A/cm2), the surface of such a sample does not change to passive state. The results of the X-ray phase analysis showed that the samples of Hastelloy subjected to heat treatment are no longer ho­ mogeneous alloys. They are virtually heterophase com­ positions. The formation of a secondary phase (which is more electronegative relative to the main phase) termi­ nates approximately after 500-hour annealing in a fluo­ ride melt at 650 °C. Since the amount of the secondary phase compounds is small relative to the main phase, and they separate out mainly at the grain boundaries of the main phase, a more stable continuous layer of the base of the alloy remains on the surface after their disso­ lution. It is this fact that causes the presence of passiva­ tion regions in voltammograms, a shift of corrosion po­ tential towards more electropositive values (Fig. 4, curve 4) and hence a decrease in the overall corrosion rate (Table 3). The shift of potential towards more posi­ tive values must be the greater the higher the bond ener­ gy in the intermetallic compounds formed. According to the results of the X-ray phase analysis, the passivation of the surface is also aided by increase in its adhesion to the sodium fluoride – zirconium fluoride melt. It was noted that after 700-hour contact with the sodium fluo­ ride – zirconium fluoride melt, the phase 7NaF·6ZrF4 is identified on the surface of all samples. The same effect persists on irradiation with an electron beam. The results of the voltammetric and X-ray phase in­ vestigations agree with the conclusions drawn from metallographic and microscopical analyses (Fig. 6). ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 71 Fig. 6. SEM micrograph: cross-section of a sample of composition A (sample 64) soaked in a NaF-ZrF4 melt at 650 °C under irradiation with an electron beam of 5066 eV/atom energy for 700 h Secondary phase compounds are mainly at the grain boundaries of the main phase. On the surface of the samples subjected to electron irradiation there are traces of “etching”. According to the results of SEM, the sur­ face of the sample is destroyed chiefly through the ”etching” of secondary phase compounds at the grain boundaries of the main phase, the etching rate being the higher the higher the electron beam energy. For exam­ ple, in a sample of composition A (sample 25), the thickness of the damaged layer at the entrance of elec­ tron beam (5066 eV/atom) was 60…100 µm and at the exit (opposite side) 40…50 µm. In a sample of compo­ sition A (sample 64), the thickness of the damaged layer at the entrance of beam was in the case of irradiation with electron beam with lower energy (64 eV/atom) 15…30 µm and at the exit 10…15 µm. The state of the surface of a sample of composition A (sample 25) at the entrance of electron beam (5066 eV/atom) is shown in Fig. 6. One can clearly see corrosion cracks on the sur­ face of lateral microsection. An X-ray microanalysis has been performed to the right and left of the circle, as shown in the photograph, depthward with a step of 1 µ m. The results are listed in Table 4. The quantitative composition of the sample with coordinate (0 µm) cor­ responds to the composition on the grain surface but not in the crack. The results obtained allow one to conclude that corrosion damages are mainly of intercrystalline character. The sample is destroyed at grain boundaries, where the melt penetrates. The arrow indicates a future crack. Table 4 Results of the X-ray microanalysis of the surface of a sample of composition A (sample 24) at the entrance of electron beam (5066 eV/atom) after 700 h at 650 °C in a sodium fluoride-zirconium fluoride melt Element Percentage of the alloy constituents (at.%) on the right of crack at a distance of (µm): 0 1 2 3 4 6 Ti 0.55 0.44 0.48 0.46 0.62 0.48 Si 0.31 0.25 - - 0.37 0.36 Cr 7.37 7.62 7.42 7.67 7.95 7.87 Fe 2.35 1.69 1.61 1.74 1.68 1.57 Ni 79.42 78.88 78.26 76.94 77.41 76.87 Mo 4.53 9.11 10.33 11.29 10.66 10.56 Zr 0.58 - - 0.59 - - Percentage of the alloy constituents (at.%) on the left of crack at a distance of (µm): Ti 0.45 0.47 0.62 0.60 0.47 0.41 Si 0.41 0.22 0.22 0.34 0.39 0.37 Cr 6.99 7.44 7.86 7.83 7.81 7.70 Fe 1.92 1.66 1.55 1.49 1.68 1.55 Ni 78.89 78.42 77.58 77.33 77.09 77.55 Mo 6.33 9.83 10.40 10.63 10.84 10.74 Zr 0.65 - - - - - The nanohardness H and elastic modulus E of the samples under investigation were determined by nanoin­ dentation analysis on a Nano Indenter II device with a Berkovich indenter by the Oliver and Pharr technique [2] from the depth of impression at a maximum load of 10mN (1 gf). The results of the hardness test showed that either irradiation or salt solutions did not practically affect the mechanical properties of the Hastelloy sam­ ples. The results obtained are listed in Table 5. The rec­ ommended alloy compositions can be used in the design of molten-salt reactors. Table 5 Results of the nanoindentation analysis (t=20 °C) of the mechanical properties of Hastelloy Sample under investiga­ tion Beam energy (eV/atom). Elastic modulus E, GPa Nanohardness H, GPa On the surface In the bulk On the surface In the bulk Sample A after heat treat­ ment 0 266±16 266±16 4.7±0.3 4.7±0.3 ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 72 Sample A after 700-hour contact with fluoride melt 0 219 219 3.0±2.2 4.9±0.3 64 242±35 268±8 5.7±0.3 4.8±0.2 5066 229±35 256±13 5.7±0.5 5.1±0.3 Sample B after heat treat­ ment 0 297±11 297±11 6.9±0.3 6.9±0.3 Sample B after 700-hour contact with fluoride melt 0 251±5 253±6 4.0±0.5 6.9±0.3 64 240±13 255±7 7.0±0.3 6.9±0.3 5066 242±17 255±9 6.9±0.2 6.9±0.3 CONCLUSIONS The investigations carried out show that intercrys­ talline corrosion is typical of nickel-molybdenum alloys of the above-mentioned compositions. The corrosion re­ sistance of the investigated samples due to surface pas­ sivation is the higher the longer exposure in molten NaF–ZrF4 mixture. The Hastelloy surface is eroded mainly through the “etching” of the secondary phases at the grain boundaries of the main phase. Surface passiva­ tion is not typical of alloys that did not undergo heat treatment. Irradiation of the alloy surface by 10 MeV an elec­ tron beam increases the corrosion rate. The voltammetric method is usefull to control the corrosion resistance of Hastelloy depending on irradia­ tion. The investigation of the mechanical properties of Hastelloy by nanoindentation analysis show that either irradiation or long contact with fluoride melt did not practically affect their mechanical properties. Alloys of the proposed compositions can be used in the design of molten-salt nuclear power plants. REFERENCES 1.C.D. Bowman. Sustained Nuclear Energy without Weapons or Reprocessing Using Accelerator-Driven System //Proceedings of the III Intern. Confer. оf Accel­ erator-Driven Transmutation Technologies. Praha, June 7–11, 1999. 2.W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments //J. Mater. Res.(7). 1992, # 6, p. 1564–1583. 3.G.F. Tikhinsky, G.P. Kovtun, V.M. Azhazha. Produc­ tion of ultra high-purity rare metals. Moscow: “Metallurgy”, 1986, 160 p. 4.V.M. Azhazha, Yu.P. Bobrov, V.D. Vyrich et al. Nickel refinement, using electron beam casting //Kharkov University bulletin. Series: “Nuclei, particles, fields”. 2003, # 601, Issue 2(22), p. 118–122. 5.V.M. Azhazha, O.S. Bakai, I.V. Gurin, I.M. Neklyu­ dov, А.O. Omelchuk, V.V. Rozhkov, V.F. Zelenskiy. Study of Corrosion of Construction Materials for Reac­ tors Employing Molten Flouride Salts or Pb-Bi Coolant Using an Electron Irradiation Test Facility //Proceed­ ings of the XYI ICPRP, -Alushta, Ukraine, September 6–11, 2004. 6.L. Kis. Kinetics of Electrochemical Metal Dissolution. Budapest: “Akademiai Kiado”, 1988, p. 272. 7.A. Robin and J. de Lepinay. Electrochemical study of the anodic dissolution of Iron and Nickel in molten LiF- NaF-KF eutectic at 600 °C using convolutional voltam­ metry //Electrochimica Acta (37). 1992, #13, p. 2433–2436. КОРРОЗИЯ ОБЛУЧЕННЫХ Ni – Mo СПЛАВОВ В РАСПЛАВЕ ФТОРИДОВ НАТРИЯ И ЦИРКОНИЯ В.М. Ажажа, А.А. Андрийко, А.С. Бакай, С.В. Волков, С.В. Девяткин, А.Н. Довбня, С.Д. Лавриненко, А.А. Омельчук, Б.М. Широков, Р.С. Шмегера Методами циклической вольтамперометрии, рентгенофазового, микроскопического анализов, а также металлографии изучена коррозия никель-молибденовых сплавов и составляющих компонентов в расплавленной эвтектической смеси фторидов натрия и циркония. Исследована зависимость скорости коррозии никель-молибденовых сплавов в расплавленных фторидах от времени выдержки в расплаве и облучения пучком электронов на электронном ускорителе. Показано, что увеличение времени контакта никель-молибденовых сплавов с фторидным расплавом уменьшает плотность тока коррозии, а облучение – увеличивает ее в тем большей мере, чем больше энергия электронного пучка. Для сплавов данного состава характерна межкристаллитная коррозия. КОРОЗІЯ ОПРОМІНЕНИХ Ni-Mo СПЛАВІВ В РОЗПЛАВІ ФТОРИДІВ НАТРІЮ ТА ЦИРКОНІЮ В.М. Ажажа, О.О. Андрійко, О.С. Бакай, С.В. Волков, С.В. Дев’яткін, О.М. Довбня, С.Д. Лавриненко, А.О. Омельчук, Б.М. Широков, Р.С. Шмегера Методами циклічної вольтамперометрії, рентгенофазового, мікроскопічного аналізів, а також металографії дослі­ джена корозія нікель-молібденових сплавів та компонентів, які входять до їхнього складу, в розплавленій евтектичній суміші фторидів натрію та цирконію. Досліджена залежність швидкості корозії зазначених сплавів від тривалості витри­ ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 73 мки в розплаві та опромінення пучком електронів на електронному прискорювачі. Показано, що збільшення тривалості контакту нікель-молібденових сплавів з фторидним розплавом зменшує густину струму корозії, а опромінення – збільшує її в тим більшій мірі, чим більша енергія електронного пучка. Для сплавів даного складу характерна міжкри­ сталітна корозія. ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 67-73. 74