On the incoherent radiation of relativistic electrons and positrons in crystal
The incoherent bremsstrahlung of high energy electrons in crystal is caused by thermal spread of atoms from their equilibrium positions in the lattice. In the present article the simulation procedure for the intensity of incoherent radiation based on the quasi-classical formulae of the bremsstrahl...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/80550 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the incoherent radiation of relativistic electrons and positrons in crystal / N.F. Shul’ga , V.V. Syshchenko // Вопросы атомной науки и техники. — 2004. — № 5. — С. 112-116. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-80550 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-805502015-04-19T03:02:35Z On the incoherent radiation of relativistic electrons and positrons in crystal Shul’ga, N.F. Syshchenko, V.V. Взаимодействие релятивистских частиц с кристаллами и веществом The incoherent bremsstrahlung of high energy electrons in crystal is caused by thermal spread of atoms from their equilibrium positions in the lattice. In the present article the simulation procedure for the intensity of incoherent radiation based on the quasi-classical formulae of the bremsstrahlung theory is developed. Substantial orientation dependence of the intensity of hard incoherent radiation is demonstrated under the angles of incidence of the particles to the crystallographic plane, close to the critical angle of planar channeling. The dechanneling effect leads to decrease of that orientation dependence. The results of simulation are in a good agreement with the experimental data. Некогерентне гальмівне випромiнювання електронiв високих энергiй у кристалi обумовлено термодинамiчними флуктуацiями вiдносно рiвноважних положень атомiв у гратцi. У цiєй статтi розвинуто процедуру моделювання iнтенсивностi некогерентного випромiнювання, яка основана на квазiкласичних формулах теорiï гальмівного випромiнювання. Показано значну орiєнтацiйну залежнiсть iнтенсивностi жорсткого некогерентного випромiнювання при кутах падiння частинок на кристалографiчну площину, якi близкi до критичного кута площинного каналювання. Ефект деканалювання приводить до зменшення цiєï орiєнтацiйноï залежнiстi. Результати моделювання знаходяться у гарному узгодженнi з даними експерименту. Некогерентное тормозное излучение электронов высоких энергий в кристалле обусловлено тепловым разбросом атомов относительно их равновесных положений в решетке. В настоящей статье развита процедура моделирования интенсивности некогерентного излучения, основанная на квазиклассических формулах теории тормозного излучения. Показана существенная ориентационная зависимость интенсивности жесткого некогерентного излучения при углах падения частиц на кристаллографическую плоскость, близких к критическому углу плоскостного каналирования. Эффект деканалирования приводит к уменьшению этой ориентационной зависимости. Результаты моделирования находятся в хорошем согласии с данными эксперимента. 2004 Article On the incoherent radiation of relativistic electrons and positrons in crystal / N.F. Shul’ga , V.V. Syshchenko // Вопросы атомной науки и техники. — 2004. — № 5. — С. 112-116. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 02.70.-c, 41.60.-m, 61.85.+p http://dspace.nbuv.gov.ua/handle/123456789/80550 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Взаимодействие релятивистских частиц с кристаллами и веществом Взаимодействие релятивистских частиц с кристаллами и веществом |
spellingShingle |
Взаимодействие релятивистских частиц с кристаллами и веществом Взаимодействие релятивистских частиц с кристаллами и веществом Shul’ga, N.F. Syshchenko, V.V. On the incoherent radiation of relativistic electrons and positrons in crystal Вопросы атомной науки и техники |
description |
The incoherent bremsstrahlung of high energy electrons in crystal is caused by thermal spread of atoms from
their equilibrium positions in the lattice. In the present article the simulation procedure for the intensity of
incoherent radiation based on the quasi-classical formulae of the bremsstrahlung theory is developed. Substantial
orientation dependence of the intensity of hard incoherent radiation is demonstrated under the angles of incidence of
the particles to the crystallographic plane, close to the critical angle of planar channeling. The dechanneling effect
leads to decrease of that orientation dependence. The results of simulation are in a good agreement with the
experimental data. |
format |
Article |
author |
Shul’ga, N.F. Syshchenko, V.V. |
author_facet |
Shul’ga, N.F. Syshchenko, V.V. |
author_sort |
Shul’ga, N.F. |
title |
On the incoherent radiation of relativistic electrons and positrons in crystal |
title_short |
On the incoherent radiation of relativistic electrons and positrons in crystal |
title_full |
On the incoherent radiation of relativistic electrons and positrons in crystal |
title_fullStr |
On the incoherent radiation of relativistic electrons and positrons in crystal |
title_full_unstemmed |
On the incoherent radiation of relativistic electrons and positrons in crystal |
title_sort |
on the incoherent radiation of relativistic electrons and positrons in crystal |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Взаимодействие релятивистских частиц с кристаллами и веществом |
url |
http://dspace.nbuv.gov.ua/handle/123456789/80550 |
citation_txt |
On the incoherent radiation of relativistic electrons and positrons in crystal / N.F. Shul’ga , V.V. Syshchenko // Вопросы атомной науки и техники. — 2004. — № 5. — С. 112-116. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT shulganf ontheincoherentradiationofrelativisticelectronsandpositronsincrystal AT syshchenkovv ontheincoherentradiationofrelativisticelectronsandpositronsincrystal |
first_indexed |
2025-07-06T04:33:46Z |
last_indexed |
2025-07-06T04:33:46Z |
_version_ |
1836870718432739328 |
fulltext |
I N T E R A C T I O N O F R E L A T I V I S T I C P A R T I C L E S W I T H C R Y S T A L S A N D M A T T E R
ON THE INCOHERENT RADIATION
OF RELATIVISTIC ELECTRONS AND POSITRONS IN CRYSTAL
N.F. Shul’ga 1, V.V. Syshchenko 2
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
e-mail: shulga@kipt.kharkov.ua
2Belgorod State University, Belgorod, Russian Federation
e-mail: syshch@bsu.edu.ru
The incoherent bremsstrahlung of high energy electrons in crystal is caused by thermal spread of atoms from
their equilibrium positions in the lattice. In the present article the simulation procedure for the intensity of
incoherent radiation based on the quasi-classical formulae of the bremsstrahlung theory is developed. Substantial
orientation dependence of the intensity of hard incoherent radiation is demonstrated under the angles of incidence of
the particles to the crystallographic plane, close to the critical angle of planar channeling. The dechanneling effect
leads to decrease of that orientation dependence. The results of simulation are in a good agreement with the
experimental data.
PACS: 02.70.-c, 41.60.-m, 61.85.+p
1. INTRODUCTION
Under motion of fast charged particles in a crystal
along one of crystallographic axes or planes the
channeling phenomenon is possible, when the particles
move in channels formed by atomic strings or planes in
the crystal (see, e.g., [1-3]). The redistribution of the
particle flux in the crystal takes place under the
channeling. Due to this fact both increase and decrease
of yields of the processes connected with small impact
parameters are possible. This is connected to the fact
that positively charged channeling particles couldn’t
come to small distances to the positively charged atomic
nuclei in the lattice, so such particles would collide with
the atomic nuclei in the crystal more rare than under
absence of the channeling. For negatively charged
particles the inverse effect takes place.
Under disorientation of the crystal on small angle to
the incident beam the particles performing the above-
barrier motion in relation to the atomic strings or planes
in the crystal appears together with the channeled
particles [3-5]. For the above-barrier particles some
redistribution of the particle flux in the crystal also takes
place. However, this effect has substantially different
form than the redistribution of the flux of channeled
particles. Namely, under above-barrier motion near
atomic planes in the crystal the positively charged
particles “hang” for a relatively long time in the region
of atomic nuclei location in the crystallographic planes,
whereas negatively charged particles fly across this
region faster than positively charged ones. At last, if the
angle of the crystal disorientation substantially exceeds
the critical angle of channeling the effect of redis-
tribution of the particle flux in the crystal is absent [3].
So, in the case of disorientation of the crystal by the
angles of order of the critical channeling angle
substantial orientation dependence of yields of the
processes connected to small impact parameters must
take place. Such orientation dependences have been
observed earlier for the nuclear reactions yields, δ-
electron yield, and a number of other processes (see,
e.g., [2,3,6,7]).
The present paper is devoted to the analysis of
orientation dependence of the yield of incoherent
radiation of relativistic electrons and positrons under
motion of the particles in the crystal near one of
crystallographic planes. The simulation procedure for
this process based on the model in which the atomic
planes in the crystal are treated as rows of atomic strings
is presented. In the frames of this model both the
coherent scattering of the particles on the uniform
atomic string potentials and the incoherent scattering on
the thermal vibrations of the lattice atoms are taken into
account. So, our procedure permits to take into account
the effects of dechanneling and rechanneling of the
particles, that makes it applicable to the targets of
arbitrary thickness. The results of simulation are
compared to the experimental data on the orientation
dependence of the radiation yield in the range of photon
energies close to the energy of the radiating electron,
obtained earlier in KIPT [7].
112 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5.
Series: Nuclear Physics Investigations (44), p. 112-116.
2. SIMULATION OF THE INCOHERENT
RADIATION
Radiation of relativistic electron in matter develops
in a large spatial region along the particle’s momentum
called as the coherence length [3,8]. If the electron
collides with a large number of crystal atoms in the
coherence length, the effective constant of the
interaction of the electron with the lattice atoms may be
large in comparison with the unit, so we could use the
semiclassical description of the radiation process. In
thedipole approximation the spectral density of
bremsstrahlung is described by the formula [3]
22
24
2
12
'2
)(1
2 qW
qqq
dq
c
e
d
d
−−+=Ε ∫
∞ δδ
ε ε
ω
π
ω
ω
δ
, (1)
where ( )vkq
−= ω
ε
ε
'
, k
is the wave vector of the
radiated photon, ε is the energy of the initial electron,
v is its velocity, ωεε −=' , ∫
∞
∞−
⊥= dtetvW icqt
q )(
is
the Fourier component of the electron acceleration in
the direction orthogonal to v ,
'2
32
ε ε
ωδ cm= .
Particularly, for the case of radiation of the electron in
the field of single atom (using the screened Coulomb
potential
r
eZerU
Rr /
)(
−
= , as the potential of the atom,
where Z is the atomic number, R is Thomas-Fermi
radius) we have:
( ) =0
)1( ρ
qW
0
022
01
22
22
ρ
ρ
ρ
ε
++= −− RqKRqcZe
, (2)
where )(1 xK is the modified Bessel function of the
third kind, 0ρ
is the impact parameter. Since the
characteristic values of q making the main contribution
to the integral (1) are 1~ −< < Rq δ , we can take 0=q
in (2):
( )
0
00
1
2
0
)1( 2
ρ
ρρ
ε
ρ
=
R
K
R
cZeW . (3)
Integrating over q, and after that over the impact
parameter, we obtain with logarithmic accuracy the
Bethe-Heitler result for radiation efficiency by the unit
particle flux in the field of the atom:
=
ω
σ
ω
d
d BH ∫ =Ε
0
2 ρ
ω
d
d
d (4)
∫
+=Ε=
mRc
cm
eZd
d
d ln
'
)(
4
31
3
16 2
22
62
0
2
εε
ωρ
ω
.
Note that the integral over the impact parameter
diverges at small values of 0ρ . The divergence results
from the use of the dipole approximation, which is valid
at mc/0 ≥ρ . We take this constraint into account by
introducing the lower limit of integration (
mc/min =ρ that is the Compton wavelength of the
electron), so this result is obtained with logarithmic
accuracy.
Consider now the radiation of the electron
interacting with the crystal that is the system of atoms
periodically arranged in space. The case of our interest
is the electron incidence onto the crystal under small
angle ψ to one of its crystallographic axes (the z axis).
It is known [3] that averaging of the equation for the
2
qW
over the thermal vibrations of atoms in the lattice
leads to the split of this value (and so the radiation
intensity) into the sum of two terms describing coherent
and incoherent effects in radiation:
=
2
qW
(5)
( ) ( ) +++= ∑ −
mn
mmqnnq
ttiqc uWuWe mn
,
)1()1()(
ρρ
( ) ( )∑
+−++
n
nnqnnq uWuW
2)1(2)1( )()(
ρρ ,
where the indexes n and m numerate the atoms under
collisions, nt is the time moment when the electron
collides with the n-th atom, 0)( nnn t ρρρ
−= is the
impact parameter of the collision with the n-th atom in
its equilibrium position 0
nρ
, )(tρ
is the trajectory of
the electron in the plane orthogonal to the z axis, and
nu is the thermal shift of the n-th atom from the
position of equilibrium.
Consider the situation when the electron moves
under small angle θ to one of the crystallographic
planes densely packed with atoms (the (x, z) plane).
Assume also that the motion takes place under small
angle ψ to the z axis, namely 1< << < ψθ . In the
range of frequencies
yacm 32/'2 θε εω > > , (6)
where ya is the distance between such atomic planes,
the incoherent component of radiation is predominant
[3]. Like in the case of the radiation on the single atom,
we take 0=q and then, substituting the formula for
)1(W
from (3), we find the following expression for the
incoherent part of the quantity of interest:
×=
22
2422 4
R
ceZWincoh
ε
(7)
−
+
× ∑
n
nn
R
u
K
2
1
ρ
+
+
+
−
2
1 R
u
K
u
u nn
nn
nn
ρ
ρ
ρ
.
It is convenient to compare the efficiency of the
incoherent radiation in the crystal with the radiation
efficiency in amorphous medium (with equal numbers
of collisions with atoms in both cases). The ratio of
these two values is equal to
113
×
=
Ε
∫
mRcRN
d
d
N
d
d
d
BH
incoh
ln2
1
2
0
2
π
ω
σ
ω
ω
ρ
∑∫
−
+
×
n
nn
R
u
Kd
2
10
2
ρ
ρ (8)
+
+
+
−
2
1 R
u
K
u
u nn
nn
nn
ρ
ρ
ρ
,
where N is the whole number of atoms with which the
electron collides under motion through the crystal,
integration over 0
2 ρd means the integration over all
possible points of incidence of the beam onto the crystal
surface. This integration can be effectively reduced to
the integration over one elementary cell in the plane
(x,y).
Under computing the value
2
1
2
1)(
+
+
+−
+
=
R
u
K
u
u
R
u
KF
ρ
ρ
ρρ
ρ
we substitute minρρ = when minρρ < to take into
account the constraint under small distances, like in the
case of a single atom. Averaging over thermal
vibrations is made by integration with Gaussian
distribution. This integration could be carried out only
numerically, so the values of the function )(ρ
F in (8)
are determined by interpolation of the results of
numerical integration for the finite set of the values ρ
.
The impact parameters of the collisions with atoms nρ
are determined using the simulated trajectory of the
electron in the crystal (see below). Integration over
0
2 ρd can be carried out using Monte-Carlo techniques.
3. SIMULATION OF THE PARTICLE
TRAJECTORY IN THE CRYSTAL
Consider the motion of the electron in the crystal
under small angle ψ to one of crystallographic axes
densely packed with atoms. Let this angle is small
enough to validity of the approximation of the uniform
potential of the atomic string, but much larger than the
critical angle of axial channeling. In this case the
problem of motion of the electron in the crystal is
reduced to the two-dimensional problem of motion in
the (x, y) plane, which is perpendicular to the axes of
atomic strings. The electron’s trajectory )(tρ
is
determined by the equation of motion [1-3]
∑ −
∂
∂−=
s
sRUc )( 0
2
ρρ
ρε
ρ
,
where )( 0
sRU ρρ
− is the potential energy of the
electron interaction with the uniform potential of the
atomic string parallel to the z axis, 0
sρ
is the position of
the string in the (x, y) plane.
The potential of the atomic string decreases rapidly
with distance increase, so the curvature of the electron
trajectory takes the place mainly on a small, least distant
to the string axis part of it. So we can approximate the
real trajectory of the electron by the broken line, the
angles between parts of which in the (x, y) plane are
equal to the angles of scattering (deflection) of the
particle in the field of corresponding strings:
∫
∞
⊥
−−
−=∆
min
2
2
2
)(
1
/2)(
ρ
ρε
ρ
ρρπϕ
bU
dbb
R , (9)
where b is the impact parameter of the collision with the
string, 2/2ψεε =⊥ , minρ is the minimal distance
between the electron and the axis of the atomic string
(see [3,4]). During the simulation process the successive
steps from one collision with the string to the next one
are made. On every such step the parameters of the
current rectilinear part of the trajectory are used in
looking for the coordinates of the next string under
collision and the impact parameter of that collision.
Realization of this algorithm using MathCAD package
is published on the address [9].
Thermal spread of the atoms from their positions of
equilibrium in crystal leads to arising the incoherent
scattering of the electrons on the thermal vibrations of
atoms together with the coherent scattering on the
uniform potentials of the atomic strings (see, e.g., [3],
§57).
The scattering angle of the electron is given by the
formula, which is distinct from Eq. (3) for the value
)1(W
only by the coefficient c:
( )
0
00
1
2
0
)1( 2
ρ
ρρ
ε
ρϑ
=
R
K
R
Ze
.
After averaging the squared absolute value of the
sum of scattering angles on all atoms of the string over
thermal vibrations of atoms, we obtain the formula
analogous to (5), and find that the mean squared value
of the incoherent scattering angle
incoh
2ϑ
is described
by the formula coinciding to (7) with additional factor
2−c .
In the simulation procedure for the electron’s
trajectory the incoherent scattering is taken into account
by addition the random value with Gaussian distribution
with the dispersion equal to ψϑ /2
incoh
to the
azimuth value of the coherent scattering angle (9). Such
model is more realistic than [9]; it permits to take into
account the dechanneling phenomenon, when the
particles moving in the channels formed by atomic
planes of the crystal, could leave them because of the
scattering on thermal vibrations of the atoms.
114
4. ORIENTATION DEPENDENCE OF
THE INCOHERENT RADIATION OF FAST
PARTICLES IN CRYSTAL
Specific parameters of the simulation are chosen in
correspondence to conditions of the experiment [7]. In
that experiment the photons of energy 1.1=ω GeV
emitted by electrons of energy 2.1=ε GeV incident on
the silicon ( 14=Z , 194,0=R Å) crystal under small
angle θ to the plane (110) (the (x, z) plane) had
registered. Under these conditions the angle of electron
incidence to the <001> axis (the z axis) had chosen
large enough to ensure the absence of axial channeling:
cψψ 100~ ,
where the critical angle of the axial channeling
4
2
105,34 −⋅≈=
z
c a
Ze
ε
ψ rad
(the lattice constant along the <001> axis in silicon
crystal is 431,5=za Å). The experimental data (see
Fig. 2 in [7]) and the results of simulation are presented
on Fig. 1. We see rather good agreement between them.
Fig. 1. Photon yields with the energy 1.1=ω GeV
vs the incidence angle of electrons with the energy
2.1=ε GeV to the (110) plane of a 30 µm thick silicon
monocrystal [7] (error bars) and the intensity of
incoherent radiation of electrons as a result of the
simulation with (circles) and without (solid line)
account of the incoherent scattering of the electrons on
the thermal vibrations of the lattice atoms
The character of the orientation dependence of the
incoherent radiation is determined by the specialties of
the particle’s dynamics in the crystal. This fact could be
illustrated under comparison of the orientation
dependencies of the incoherent radiation by electrons
and positrons under the same conditions (see Fig. 2,
where we have not take into account the incoherent
scattering of the particles on thermal vibrations of atoms
for more demonstrability). For the θ values close to
zero the planar channeling takes place for the most part
of points of incidence of the particle onto the crystal.
The electron (negatively charged particle) under planar
channeling spends the most part of the time of its
motion through the crystal in close vicinity to atomic
plane, with small impact parameters of collisions with
atoms that leads to the maximum in the efficiency of
incoherent radiation. On the other side, the positron
under planar channeling spends the most part of the
time far from atomic planes that leads to the minimum
in the incoherent radiation intensity.
In the case of θ values close to the critical angle of
planar channeling cθ (for the case under discussion
4102 −⋅≈cθ rad) the above-barrier positrons spend the
most part of the time in close vicinity to atomic planes
that leads to maxima in the incoherent radiation
efficiency. Oppositely, the above-barrier electrons
rapidly move through atomic planes that leads to
minima in the incoherent radiation intensity.
Under cθθ > > the energy of transverse motion of
the particle 2/2ε θε =⊥ [3] exceeds by far the height
of the potential barrier formed by uniform potential of
the atomic plane in the crystal. In this case the trajectory
of the particle is almost rectilinear. For such trajectory
all possible impact parameters of collisions with atoms
are almost equiprobable, like in amorphous medium,
and the incoherent radiation efficiency become equal to
that in amorphous medium (in accuracy to Debye-
Waller factor) and independent on the crystal
orientation.
Fig. 2. The efficiency of incoherent radiation of
positrons (solid line) and electrons (dashed line) in the
crystal in ratio to that in amorphous medium with the
same number N of collisions with atoms as a result of
the simulation according to Eq. (8) under the conditions
of Fig. 1
Fig. 3. Changing of the orientation dependence of
the incoherent radiation efficiency by the electrons
under the conditions of Fig. 1 with the increase of the
crystal thickness
115
The electron scattering on the thermal oscillations of
the lattice atoms could lead to the dechanneling of the
electron, when the motion in the planar channel changes
to the above-barrier motion. As a consequence, the
maxima and minima described above become less
marked (compare the results of simulation with and
without account of the incoherent scattering on Fig. 1).
As the crystal thickness grows, the probability of
dechanneling of the electrons increases that leads to the
gradual decrease of the orientation dependence of the
incoherent radiation efficiency (see Fig. 3).
This work is supported in part by Russian
Foundation for Basic Research (project 03-02-16263)
and by internal grant of Belgorod State University
(project ВКГ 027-04).
REFERENCES
1. J. Lindhard. Influence of crystal lattice on motion
of energetic charged particles // K. Dansk. Vid. Selsk.
Mat. Phys. Medd. 1965, v. 34, №14, p. 1-64.
2. D.S. Gemmell. Channeling and related effects in
the motion of charged particles through crystal // Rev. of
Mod. Phys. 1974, v. 46, №1, p. 129-228.
3. A.I. Akhiezer, N.F. Shul’ga. High-Energy
Electrodynamics in Matter. Amsterdam: “Gordon and
Breach”, 1996, 388 p.
4. A.I. Akhiezer, I.A. Akhiezer, N.F. Shul’ga. To
the theory of bremsstrahlung of relativistic electrons and
positrons in crystals // Sov. Phys. JETP. 1979, v. 49,
p. 631-640.
5. A.I. Akhiezer, N.F. Shul’ga, V.I. Truten’,
A.A. Grinenko, V.V. Syshchenko. Dynamics of high-
energy charged particles in straight and bent crystals //
Physics-Uspekhi. 1995, v. 38, № 10, p. 1119-1145.
6. V.F. Boldyshev, V.I. Kasilov, G.D. Kovalenko et
al. // Nucl. Instr. and Methods. 1988, v. B 33, p. 30.
7. V.M. Sanin, V.M. Khvastunov, V.F. Boldyshev,
N.F. Shul’ga. Orientation effects in intensity and
polarization of γ-radiation emitted by 1 GeV electrons
in single crystal // Nucl. Instr. and Methods. 1992, v.
B67, p. 251-255.
8. M.L. Ter-Mikaelian. High-Energy Electro-
dynamic Processes in Condensed Media. New York:
“Wiley Interscience”, 1972, 457 p.
9. http://www.mathcad.com/library/LibraryContent/
trajec_e.mcd
О НЕКОГЕРЕНТНОМ ИЗЛУЧЕНИИ
РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ В КРИСТАЛЛЕ
Н.Ф. Шульга, В.В. Сыщенко
Некогерентное тормозное излучение электронов высоких энергий в кристалле обусловлено тепловым
разбросом атомов относительно их равновесных положений в решетке. В настоящей статье развита
процедура моделирования интенсивности некогерентного излучения, основанная на квазиклассических
формулах теории тормозного излучения. Показана существенная ориентационная зависимость
интенсивности жесткого некогерентного излучения при углах падения частиц на кристаллографическую
плоскость, близких к критическому углу плоскостного каналирования. Эффект деканалирования приводит к
уменьшению этой ориентационной зависимости. Результаты моделирования находятся в хорошем согласии
с данными эксперимента.
ПРО НЕКОГЕРЕНТНЕ ВИПРОМIНЮВАННЯ
РЕЛЯТИВИСТСЬКИХ ЕЛЕКТРОНIВ ТА ПОЗИТРОНIВ У КРИСТАЛI
М.Ф. Шульга, В.В. Сищенко
Некогерентне гальмівне випромiнювання електронiв високих энергiй у кристалi обумовлено
термодинамiчними флуктуацiями вiдносно рiвноважних положень атомiв у гратцi. У цiєй статтi розвинуто
процедуру моделювання iнтенсивностi некогерентного випромiнювання, яка основана на квазiкласичних
формулах теорiï гальмівного випромiнювання. Показано значну орiєнтацiйну залежнiсть iнтенсивностi
жорсткого некогерентного випромiнювання при кутах падiння частинок на кристалографiчну площину, якi
близкi до критичного кута площинного каналювання. Ефект деканалювання приводить до зменшення цiєï
орiєнтацiйноï залежнiстi. Результати моделювання знаходяться у гарному узгодженнi з даними
експерименту.
116
INTERACTION OF RELATIVISTIC PARTICLES WITH CRYSTALS AND MATTER
ON THE INCOHERENT RADIATION
OF RELATIVISTIC ELECTRONS AND POSITRONS IN CRYSTAL
N.F. Shul’ga 1, V.V. Syshchenko 2
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
e-mail: shulga@kipt.kharkov.ua
3. SIMULATION OF THE PARTICLE TRAJECTORY IN THE CRYSTAL
REFERENCES
О НЕКОГЕРЕНТНОМ ИЗЛУЧЕНИИ
РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ В КРИСТАЛЛЕ
Н.Ф. Шульга, В.В. Сыщенко
ПРО НЕКОГЕРЕНТНЕ ВИПРОМIНЮВАННЯ
РЕЛЯТИВИСТСЬКИХ ЕЛЕКТРОНIВ ТА ПОЗИТРОНIВ У КРИСТАЛI
М.Ф. Шульга, В.В. Сищенко
|