Radiation from relativistic positrons during planar channeling in crystals

We present a detailed calculation of channeling radiation of planar-channeled positrons from crystal targets in the framework of our approach, which was proposed recently.

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Boldyshev, V.F., Shatnev, M.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/80551
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Radiation from relativistic positrons during planar channeling in crystals / V.F. Boldyshev, M.G. Shatnev // Вопросы атомной науки и техники. — 2004. — № 5. — С. 117-119. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80551
record_format dspace
spelling irk-123456789-805512015-04-19T03:02:47Z Radiation from relativistic positrons during planar channeling in crystals Boldyshev, V.F. Shatnev, M.G. Взаимодействие релятивистских частиц с кристаллами и веществом We present a detailed calculation of channeling radiation of planar-channeled positrons from crystal targets in the framework of our approach, which was proposed recently. Представлено докладні обчислювання випромінювання при каналіруванні площинно-каналіруючих позітронів із кристаличної мішені за нашим підхідом, який було запропоновано раніше. Представлены подробные вычисления излучения позитронов при плоскостном каналировании в кристаллической мишени в рамках предложенного ранее подхода. 2004 Article Radiation from relativistic positrons during planar channeling in crystals / V.F. Boldyshev, M.G. Shatnev // Вопросы атомной науки и техники. — 2004. — № 5. — С. 117-119. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 61.85.+p; 41.60.-m http://dspace.nbuv.gov.ua/handle/123456789/80551 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Взаимодействие релятивистских частиц с кристаллами и веществом
Взаимодействие релятивистских частиц с кристаллами и веществом
spellingShingle Взаимодействие релятивистских частиц с кристаллами и веществом
Взаимодействие релятивистских частиц с кристаллами и веществом
Boldyshev, V.F.
Shatnev, M.G.
Radiation from relativistic positrons during planar channeling in crystals
Вопросы атомной науки и техники
description We present a detailed calculation of channeling radiation of planar-channeled positrons from crystal targets in the framework of our approach, which was proposed recently.
format Article
author Boldyshev, V.F.
Shatnev, M.G.
author_facet Boldyshev, V.F.
Shatnev, M.G.
author_sort Boldyshev, V.F.
title Radiation from relativistic positrons during planar channeling in crystals
title_short Radiation from relativistic positrons during planar channeling in crystals
title_full Radiation from relativistic positrons during planar channeling in crystals
title_fullStr Radiation from relativistic positrons during planar channeling in crystals
title_full_unstemmed Radiation from relativistic positrons during planar channeling in crystals
title_sort radiation from relativistic positrons during planar channeling in crystals
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Взаимодействие релятивистских частиц с кристаллами и веществом
url http://dspace.nbuv.gov.ua/handle/123456789/80551
citation_txt Radiation from relativistic positrons during planar channeling in crystals / V.F. Boldyshev, M.G. Shatnev // Вопросы атомной науки и техники. — 2004. — № 5. — С. 117-119. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT boldyshevvf radiationfromrelativisticpositronsduringplanarchannelingincrystals
AT shatnevmg radiationfromrelativisticpositronsduringplanarchannelingincrystals
first_indexed 2025-07-06T04:33:49Z
last_indexed 2025-07-06T04:33:49Z
_version_ 1836870721880457216
fulltext RADIATION FROM RELATIVISTIC POSITRONS DURING PLANAR CHANNELING IN CRYSTALS V.F. Boldyshev, M.G. Shatnev National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail: shatnev@ kipt.kharkov.ua We present a detailed calculation of channeling radiation of planar-channeled positrons from crystal targets in the framework of our approach, which was proposed recently. PACS: 61.85.+p; 41.60.-m 1. INTRODUCTION Theoretical studies of the radiation from planar- channeled electrons and positrons are due to M.A. Kumakhov and R. Wedell [1], N.K. Zhevago [2], A.I. Akhiezer, I.A. Akhiezer and N.F. Shul`ga [3,4]. Experimentally the channeling radiation (CR) of positrons was observed by different groups [5,6] demonstrating strong and sharp peaks in the spectrum. The purpose of the present work is to calculate the spectral-angular distribution of the channeling radiation intensity emitted from positrons in the framework of approach, which was proposed recently [7]. 2. GENERAL REMARKS ON CR AND CALCULATION We consider a relativistic charged particle incident onto a crystal at a small angle to a crystal planes. In the planar channeling case for positively charged positrons, the channel is between the crystal planes. This channel is the source of a potential well in the direction transverse to particle motion giving rise to transversely bound states for the particle. Transitions to lower- energy states lead to the phenomenon known as channeling radiation (CR). Calculations of the CR process are carried out by using the rules of quantum electrodynamics [1,2]. The Doppler formula for the energy of photon emitted is derived using the energy and momentum conservation laws. For this energy one gets θβ ω ω cos//1 − ′= nn (1) where nnnn ′−=′ εεω ; nε and n′ε are the discrete energy levels of the transverse oscillations of the positron in the channel before and after radiation, respectively; E p// //  =β , E and //p are the energy and the longitudinal momentum of the positron, and θ is the angle of radiation emission relative to the direction of motion of the channeled positron. For positrons of not too high transverse energies, a good approximation (see e.g., Ref. [1,2]) is the harmonic potential leading to equidistant energy levels )2/1( +Ω= nnε (2) where ,022 E U pd =Ω pd is the distance between planes in the corresponding units, and 0U is the depth of the potential well. Since )2 2 1 1(// −−≈ γ E p (where m E =γ ), )2 2 1 1(cos θθ −≈ and taking into account Eq. (2), Eq. (1) can be expressed as )221( )(22 γθ γω + ′−Ω = nn (3) It follows from Eq. (3) that the radiation of a maximum frequency )(22 nn ′−Ω= γω (4) is emitted in the forward direction (at 0=θ ). The case 1=′− nn corresponds to the peak values of the experimental channeling radiation spectra [6], being the first harmonic with the photon energy Ω= 22γω . As it follows from Eq. (3), photons emitted via positron transition from any initial level n to the final level 1−n are identical (i.e., have the same energies for the same emission angles). This means that the resulting amplitude should be given by an additive superposition of amplitudes of all such transitions. The positron state outside the crystal )0( <z is a plane wave, whereas inside the crystal )0( >z , the part of its wave function corresponding to the transverse motion is a superposition of the harmonic oscillator eigenvectors. Factors nc describing transitions from the initial state to states with the transverse energy levels n can be found using boundary conditions set upon the wave function at the crystal boundary )0( =z . Then, a PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5. Series: Nuclear Physics Investigations (44), p. 117-119. 117 transition to the closest lower level 1−n occurs with emission of a photon having energy ω . One may expect that the total amplitude of the transition from the initial to final state accompanied by the photon emission is determined by products of the amplitudes nc and 1, −nnM . Following the rules of the quantum mecha- nics, we express this amplitude as ∑ −∝ n nnMncA 1, , (5) were summation is performed over all the harmonic oscillator levels. Also we must find an additive superposition of amplitudes of all transitions .,..3,2 −→−→ nnnn etc. Taking into account these considerations, we can write the transition matrix element in the form ∑ ∑ −= j n jnnMncifM , 2 , 2 (6) where nnj ′−= . It is well known from the quantum electrodynamics that the transition matrix element is given by , 2222 λω π J V e ifM ⋅ ⋅ = (7) where , 137 12 =e 3LV = is the normalization volume, 2,1=λ indicates the linear photon polarization, and , 3† ∫ Ψ⋅−Ψ ′= rdrkieJ  λαλ (8) with * λεαλα  ⋅= . The prime indicates the final state. As we mentioned above, the wave function is the solution of the time-independent Dirac equation for a relativistic particle moving with momentum ),,0(// zpypp = in a one-dimensional planar potential )(xU periodic in the x direction (which is normal to the channeling planes) Ψ=Ψ−+∇⋅ )()( xUmEi βα  , (9) where m and E are the particle’s mass and energy, α and β are the Dirac matrices. Separating the wave function Ψ into large and small components,      Ψ Ψ =Ψ b a (10) and using the standard representation for the Dirac matrices, leads to a Pauli-type equation for the large components, 0))((1))(( =Ψ−−+Ψ∇⋅−+−∇⋅ amxUEamxUE  σσ Since a potential )(xU is independent of y and z , the solution of last equation is a plane wave in the yz plane χϕ )()](exp[ xyypzzpia +∝Ψ . (11) This allows us to transform a Pauli-type equation into a one-dimensional, relativistic Schrödinger equation for the transverse motion )()()(2 )(2 2 1 xxxU dx xd E ε ϕϕ ϕ =+− , (11a) where E ypzpmE 2 2222 −−− =ε . (12) In a given potential, the latter will assume certain bound-state eigenvalues ,...)2,1,0(0 =< nnε , with corresponding eigenfunctions )(xnϕ . The wave function of Eq.(10) is finally obtained in the form )()////exp( xnrpi mE i L N ϕ χ σ χ          + ∇⋅−=Ψ , (13) where 2L being the two-dimensional normalization volume for the plane waves, E mE N 2 + = , and χ being a two-component spinor which is      0 1 or      1 0 when the particle spin points in the z+ or the z− direction in the rest frame, respectively. For the harmonic potential 2 0)( xUxU = , it is well known that the corresponding eigenfunctions being given by ),()2/2exp( !2 14)( xEnHxE nn E xn ΩΩ− Ω = π ϕ where nH are the Hermite polynomials. According to Eq. (8), we find, using Eq. (13) and last expression for the wave functions, the first-order matrix element corresponding to the jnn −→ transverse transition ,1])[(** 2)//////(2)2( χσλεχδπλ  BiANNkppJ +′−′−= where ), ) ////(1// ,1) ) 11 (2 ), ) 11 (//1// ), ) 11 (2 mE p mE p IB I mE xk mEmE iIxB mEmE pIA mEmE iIxA +− ′ − + = +− + + − +− = +− + + =/ +− + + −= ω ωω ω ω    (14) with ∫ −−= ∫ −−= , )( )(*)exp(2 ,)()(*)exp(1 dx dx xnd xjnxxikI dxxnxjnxxikI ϕ ϕ ϕϕ (15) 3 Then we calculate the matrix element and the differential intensity, and after summation over polarization of emitted photon and the positron we find by integrating over // 2 pd ′ ∑ ×∑ −= j n jnnMnc e dd Id 2 ,2 222 π ω οω ),cos//( jnn −−−× ωθω βωδ (16) where the factors nc are, in the case of the parabolic potential and when the initial positron is a plane wave, given by )() 2 2 exp(4 !12 ΩΩ − Ω− = E xp nH E xp Enn ni nc π . (17) 3. CONCLUSIONS Following N.K. Zhevago [2], the spectral-angular distribution of emitted photons is represented as ∑∝ f ifM dd Id 22 οω (18) The sum entering Eq. (18) is the one over the quantum numbers f of the transverse motion of the particle. Then, the probability of having a definite transverse energy is taken into account by multiplying each term of this sum by a corresponding factor. In our consideration, discrete levels of the transverse motion in the harmonic oscillator potential refer to the intermediate state of the particle. Accordingly, the contribution to the intensity due to transitions, e.g., between the closest levels is determined by the square of the absolute value of Eq. (5) . 2 1, )1(2 ∑ −∝ n nnMnc dd Id οω (19) In other words, unlike Ref. [2], we get an expression that contains interference terms mixing amplitudes of photon emission from different equidistant levels. We would like to note that dynamics of channeling electron in a crystal differs from that of the positron case. The transverse potential well for the electron does not give rise to equidistant energy levels for transverse particle motion. Therefore, there are no interference contributions to the photon emission intensity similar to those present in Eq. (19). In our opinion, this could explain the greater intensity in case of channeling positron compared to that for the electron observed in experiment [6]. Corresponding numerical calculations will be given in a subsequent publication. REFERENCES 1. M.A. Kumakhov and R. Wedell. Theory of radiation of relativistic channeled particles // Phys. Stat. Sol. 1977, v. 84, p. 581-593. 2. N.K. Zhevago. Emission of γ quanta by channeled particles // Zh. Eksp. Teor. Fiz. 1978, v. 75, p. 1389-1401 (in Russian). 3. A.I. Akhiezer, I.A. Akhiezer and N.F. Shul`ga. To the classical theory of radiation of fast particles in crystals // Zh. Eksp. Teor. Fiz. 1979, v. 76, p. 1244-1253 (in Russian). 4. A.I. Akhiezer and N.F. Shul`ga. Radiation of relativistic particles in single crystals // Sov. Phys.Usp. 1982, v. 25, p. 541-564. 5. R.O. Avakian, I.I. Miroshnichenko, J. Murrey and T. Fieguth. Radiation emission by ultrarelativistic positrons moving in a single crystal near the crystallographic axec and planes // Zh. Eksp. Teor. Fiz. 1982, v. 82, p. 1825-1832 (in Russian). 6. J. Bak, J.A. Ellison, B. Marsh, F.E. Meyer, O. Pedersen, J.B.B. Petersen, E. Uggerhøj and K. Østergaard. Channeling radiation from 2- 55 GeV/c electrons and positrons // Nucl.Phys. 1985, v. 75, p. 491-527. 7. V.F. Boldyshev, M.G. Shatnev. On the question of interference in radiation produced by relativistic channeled particles. Proc of the First Feynman Festival August, 2002, University of Maryland, College Park, Maryland, USA, quant- ph/0210203. ИЗЛУЧЕНИЕ РЕЛЯТИВИСТСКИХ ПОЗИТРОНОВ ПРИ ПЛОСКОСТНОМ КАНАЛИРОВАНИИ В КРИСТАЛЛАХ В.Ф. Болдышев, М.Г. Шатнев Представлены подробные вычисления излучения позитронов при плоскостном каналировании в кристаллической мишени в рамках предложенного ранее подхода. ВИПРОМІНЮВАННЯ ВІД РЕЛЯТІВІСТСЬКИХ ПОЗІТРОНІВ ПРИ ПЛОЩИННОМУ КАНАЛІРУВАННІ В КРИСТАЛАХ В.Ф. Болдишев, М.Г. Шатнєв Представлено докладні обчислювання випромінювання при каналіруванні площинно-каналіруючих позітронів із кристаличної мішені за нашим підхідом, який було запропоновано раніше. 3 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 3. CONCLUSIONS REFERENCES