Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector
The dependence of interstrip capacitance of the double-sided microstrip detector on frequency of measuring is explored. Has been investigated at what frequency of measuring the observed value of interstrip capacitance is most in accord with quantity of interstrip resistance. By obtained results th...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/80552 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector / N.I. Maslov, S.M. Potin, A.F. Starodubtsev // Вопросы атомной науки и техники. — 2004. — № 5. — С. 120-125. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-80552 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-805522015-04-19T03:02:36Z Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector Maslov, N.I. Potin, S.M. Starodubtsev, A.F. Взаимодействие релятивистских частиц с кристаллами и веществом The dependence of interstrip capacitance of the double-sided microstrip detector on frequency of measuring is explored. Has been investigated at what frequency of measuring the observed value of interstrip capacitance is most in accord with quantity of interstrip resistance. By obtained results the conclusions about an opportunity of application of interstrip capacitance measuring for detection of defects of the microstrip detectors at stage of their characterisation are made. Досліджено залежність міжсмугової ємності двостороннього мікросмугового детектора від частоти вимірювання. Вивчено, при якій частоті вимірювання результати вимірювання міжсмугової ємності найбільш співпадають зі значенням міжсмугового опору. По отриманим результатам зроблено висновки про можливість застосування вимірювання міжсмугової ємності для знаходження дефектів мікросмугових детекторів на етапі їхнього тестування. Исследована зависимость межполосковой емкости двухстороннего микрополоскового детектора от частоты измерения. Изучено, при какой частоте измерений результаты измерений межполосковой емкости наиболее согласуются с величиной межполоскового сопротивления. По полученным результатам сделаны выводы о возможности применения измерения межполосковой емкости для обнаружения дефектов микрополосковых детекторов на этапе их тестирования. 2004 Article Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector / N.I. Maslov, S.M. Potin, A.F. Starodubtsev // Вопросы атомной науки и техники. — 2004. — № 5. — С. 120-125. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 29.40. Wk. http://dspace.nbuv.gov.ua/handle/123456789/80552 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Взаимодействие релятивистских частиц с кристаллами и веществом Взаимодействие релятивистских частиц с кристаллами и веществом |
spellingShingle |
Взаимодействие релятивистских частиц с кристаллами и веществом Взаимодействие релятивистских частиц с кристаллами и веществом Maslov, N.I. Potin, S.M. Starodubtsev, A.F. Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector Вопросы атомной науки и техники |
description |
The dependence of interstrip capacitance of the double-sided microstrip detector on frequency of measuring is
explored. Has been investigated at what frequency of measuring the observed value of interstrip capacitance is most
in accord with quantity of interstrip resistance. By obtained results the conclusions about an opportunity of
application of interstrip capacitance measuring for detection of defects of the microstrip detectors at stage of their
characterisation are made. |
format |
Article |
author |
Maslov, N.I. Potin, S.M. Starodubtsev, A.F. |
author_facet |
Maslov, N.I. Potin, S.M. Starodubtsev, A.F. |
author_sort |
Maslov, N.I. |
title |
Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector |
title_short |
Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector |
title_full |
Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector |
title_fullStr |
Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector |
title_full_unstemmed |
Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector |
title_sort |
interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Взаимодействие релятивистских частиц с кристаллами и веществом |
url |
http://dspace.nbuv.gov.ua/handle/123456789/80552 |
citation_txt |
Interference of quantities of interstrip capacitance and interstrip resistances of the two-coordinate microstrip detector / N.I. Maslov, S.M. Potin, A.F. Starodubtsev // Вопросы атомной науки и техники. — 2004. — № 5. — С. 120-125. — Бібліогр.: 14 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT maslovni interferenceofquantitiesofinterstripcapacitanceandinterstripresistancesofthetwocoordinatemicrostripdetector AT potinsm interferenceofquantitiesofinterstripcapacitanceandinterstripresistancesofthetwocoordinatemicrostripdetector AT starodubtsevaf interferenceofquantitiesofinterstripcapacitanceandinterstripresistancesofthetwocoordinatemicrostripdetector |
first_indexed |
2025-07-06T04:33:53Z |
last_indexed |
2025-07-06T04:33:53Z |
_version_ |
1836870725408915456 |
fulltext |
INTERFERENCE OF QUANTITIES OF INTERSTRIP CAPACITANCE
AND INTERSTRIP RESISTANCES OF THE TWO-COORDINATE
MICROSTRIP DETECTOR
N.I. Maslov, S.M. Potin, A.F. Starodubtsev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
e-mail: astarodubtsev@kipt.kharkov.ua
The dependence of interstrip capacitance of the double-sided microstrip detector on frequency of measuring is
explored. Has been investigated at what frequency of measuring the observed value of interstrip capacitance is most
in accord with quantity of interstrip resistance. By obtained results the conclusions about an opportunity of
application of interstrip capacitance measuring for detection of defects of the microstrip detectors at stage of their
characterisation are made.
PACS: 29.40. Wk.
INTRODUCTION
Last time the silicon microstrip detectors received
wide application in experimental physics. This type of
detectors is used for tracking systems practically of all
major experiments in high-energy physics [1-7]. For
build-up of track system one uses from several hundreds
up to several thousand microstrip detectors. Before
application all these detectors should be tested for
checkout of conformity to the requirements of the
experiment. The optimum procedure of testing is
developed for this purpose [8-10]. This procedure
includes a gang of methods to gain the most complete
detector characteristic by the least quantity of
measurings. For the double-sided microstrip detector
such procedure as a rule includes measuring interstrip
resistance and (or) interstrip capacitance. These two
parameters are the basic quantities defining quality of
the detector. Interstrip resistance determines charge
distribution between adjacent strips. In turn it
determines level of useful signal and hence signals to
noise relation and spatial resolution of the detector.
Interstrip capacitance gives the basic contribution to a
capacitive load of readout electronics. In modern track
systems, in which the microstrip detectors are used, they
are equipped by prompt readout electronic with shaping
time about several microseconds and less. At such small
shaping times the basic contribution to noise of system
is defined by the capacitive load at the input of the
preamplifier, which is defined in basic by interstrip
capacitance.
The measuring of interstrip capacitance and
interstrip resistance can be applied in several cases. In
first, this is measuring of physical quantities, and in
second, measuring for a detection of technological
defects at a stage of characterization of the detector.
Generally these defects represent different flaws of p+
and n+ implantations giving a low resistance between
two strips (short circuit).
The measuring of the physical quantity of interstrip
capacitance is used for an estimation of the contribution
of interstrip capacitance in total capacitance of a strip
120 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5.
Series: Nuclear Physics Investigations (44), p. 120-125.
and for definition of relation of quantity of interstrip
capacitance and coupling capacitor. This kind of
measurements should be executed most precisely,
therefore it is necessary to use setup allowing to get rid
from all parasitic capacitances and ensuring most
precise measurement.
There are some works devoted to examination of
frequency dependence of interstrip capacitance.
Interstrip capacitance strongly depends on a
construction of the detector and performances of
materials used for its manufacture. Therefore frequency
dependences of interstrip capacitance are various. So,
for example in [11] the value of interstrip capacitance
decrease at increase of frequency, whereas in [12] the
value of interstrip capacitance practically does not
depend at frequency, and in [13] and [14] the value of
interstrip capacitance increase with increase of
frequency of measuring, that is qualitatively in good
agreement with results, obtained by us.
All examination of frequency dependence of
interstrip capacitance carried out before was executed
with the purpose of definition of frequency,that is
optimum for measuring the physical quantity. With the
purpose of optimization of a procedure of
characterization of the microstrip detector and
opportunity of application of measuring of interstrip
capacitance for technological defects detection, we
spent examination of interrelation of quantity of
interstrip capacitance on different frequencies of
measuring and quantity of interstrip resistance.
EXPERIMENTAL CONDITIONS
For examinations two types of detectors were used.
one is double-sided detector with polysilicon biasing
resistors. For an opportunity of a precise measurement
of interstrip resistance the biasing resistors detached
from a bias line on 12 strips. The second detector is
double-sided detector with punch - through bias system.
Both detectors have identical geometry and one type of
a p+ stop structure.
Fig. 1. Setup of measuring of interstrip capacitance
121
0 10 20 30 40 50 60 70 80
10
20
30
40
50
C
is
at 1 MHz
C
is
at 1 kHz
C
is
(p
F)
Bias Voltage
Fig. 2. Dependence of interstrip capacitance on the
bias voltage
DETECTOR WITH POLYSILICON
RESISTORS
The examinations of the detector with polysilicon
resistors were carried out in two stages.
First investigation phase were spent on the ohmic
side of the double-sided microstrip detector. As on this
side the interstrip resistance sharply varies only at
achievement of a voltage of strips separation, therefore
short circuit can be imitated, applying voltage that is
less than separation voltage. For this purpose with setup
showed in Fig. 1 the dependence of interstrip
capacitance and dissipation factor from a bias voltage
was measured. The measuring were carried out on
frequencies 1 MHz and 1 kHz.
In Fig. 2 the results of measuring of interstrip
capacitance, and in Fig. 3 - dissipation factor for two n+
strips with high interstrip resistance are submitted. As it
is visible from figures, at the moment of n+ strips
separation capacitance at frequency 1 kHz varies much
more, than at frequency 1 MHz. Dissipation factor at
change of frequency changes dependence on the voltage
on opposite.
Fig. 4 displays dependence of interstrip resistance on
the bias voltage for two strips, In Fig. 5 and Fig. 6
measurements of the same parameters are given, but
only in the range close to the voltage of strips separation
and with finer step to show clearly the moment of strips
separation.
At the second stage the detector with actual
technological defects was explored. For measuring 12
strips, with detached polysilicon resistors were chosen,
among which there are as the strips with high, and with
low interstrip resistance. The measuring were carried
out at the voltage of a complete depletion of the
detector. Interstrip resistance, and then interstrip
capacitance was measured. The results of measurements
are given in Fig. 7 and in Fig. 8.
DETECTOR WITH PUNCH - THROUGH BIAS
SYSTEM
The punch - through bias system differs from the
polysilicon resistor by that instead of the polysilicon
resistor the bias resistance is ensured with a construction
like p-n-p, which is implemented at existence of a gap
of particular quantity between a protective ring and strips.
For examinations the detector having technological
defects on the ohmic side also was chosen that has given
in occurrence of some strips with low interstrip
resistance. The examinations of this detector also were
carried out in two stages. Frequency dependence of
interstrip capacitance and dissipation factor at first was
measured at the voltage of the complete depletion of the
detector on the strip with high interstrip resistance for
parallel and serial equivalent circuits of capacitance
measuring. The results of these measurements are given
in Fig. 9 and Fig. 10.
122
0 10 20 30 40 50 60 70 80
-1,5
-1,0
-0,5
0,0
0,5
1,0
1,5
2,0
D
is
si
pa
tio
n
fa
ct
or
Bias voltage
D at 1MHz
D at 1 kHz
Fig. 3. Dependence of the dissipation factor on the bias
voltage
0 10 20 30 40 50 60 70 80
1E-4
1E-3
0,01
0,1
1
10
R
is
, G
O
Hm
Bias Voltage
Fig. 4. Dependence of interstrip resistance on the bias
voltage
28 29 30 31 32 33 34
1E-3
0,01
0,1
1
10
R
is
, G
O
Hm
Bias Voltage
Fig. 5. Interstrip resistance in the range close to the
separation voltage
28 29 30 31 32 33 34
10
100
C
is
, p
F
Bias Voltage
Cis at 1MHz
Cis at 1kHz
Fig. 6. Interstrip capacitance
in the range close to the separation voltage
0 2 4 6 8 10 12
0,1
1
10
100
1000
R
is
, M
O
hm
Strip
Fig. 7. Distribution of interstrip resistance
0 2 4 6 8 10 12
2
3
4
5
6
7
8 41 pF
C
is
p
F
Strip
Cis at 1kHz
C
is
at 1MHz
Fig. 8. Distribution of interstrip capacitance
100 1000 10000 100000 1000000
1,5pF
2,0pF
2,5pF
3,0pF
3,5pF
4,0pF
4,5pF
C
is
Frequency, Hz
Cis parallel
Cis serial
Fig. 9. Dependence of interstrip capacitance on
frequency at the voltage of the complete depletion
100 1000 10000 100000 1000000
-0,40
-0,35
-0,30
-0,25
-0,20
-0,15
-0,10
-0,05
0,00
D
Frequency, Hz
D perallel
D serial
Fig. 10. Dependence of the dissipation factor on
frequency at the voltage of the complete depletion
Then, as well as for the detector with polysilicon
resistors, the dependence of interstrip capacitance and
dissipation factor from the bias voltage on two
frequencies 1 kHz and 1 MHz was measured. This test
was executed for two equivalent circuits of capacitance
measuring too. The results of measuring of interstrip
capacitance and dissipation factor can be seen in Fig. 11
and Fig. 12 correspondingly. And, at last, measurements
of interstrip capacitance on strips with actual defects
were carried out. Fig. 13 displays distribution of
interstrip resistance, and Fig. 14 and Fig. 15 show
interstrip capacitances for the chosen part of the detector
on frequencies 1 kHz and 1 MHz accordingly.
ANALYSIS OF RESULTS
As have shown frequency measurements (Fig. 9 and
Fig. 10), the quantity of interstrip capacitance
essentially depends on frequency of measuring. It is
explained to that any physical capacitor can be
presented as serial and parallel equivalent circuits.
These circuits are submitted in Fig. 16. Both these
circuits represent effects of leakage of insulator and
resistance of materials of capacitor plates. Rs influences
quantity of capacitance. For an estimation of this
influence there is such parameter as dissipation factor,
D, that is determined under equation:
D=−2πfCRs
where f is frequency of measuring, C is quantity of
capacitance and Rs is serial resistance.
As it is visible from the formula, the dissipation
factor is directly proportional to quantity of serial
resistance, that is, it displays “purity” of measuring of
capacitance. It is obvious, that for the ideal condenser
Rs=0. The value Rs is higher, the distortion is greater
that it imports to quantity of capacitance. However for
the detection of strips with low interstrip resistance the
defining role has the responsivity of measuring to a
different kind of short circuits but not the accuracy of
capacitance measurement. This responsivity increases
with growth of the contribution of serial resistance
At measuring frequency 1 kHz measured
capacitance has the much more contribution of
resistance and, hence, major responsivity to low
interstrip resistance, than at frequency 1 MHz. So, for
example, at frequency 1 MHz Cis=4,2381 pF and
D=−0,0119 and at frequency 1 kHz Cis=3,67411 pF and
D=−0,10582. Then according to equation quantities of
serial resistance for 1 MHz and 1 kHz will be equal
447 Ohms and 459 kOhm accordingly. As it is visible,
the serial resistance strongly depends on frequency.
Probably, it is concerned with frequency dependence of
conductance of materials, of which the detector
manufactured.
0 -10 -20 -30 -40 -50 -60
100fF
1pF
10pF
100pF
C
is
Voltage
Cis parallel at 1kHz
C
is
serial at 1kHz
C
is
parallel at 1MHz
Cis serial at 1MHz
Fig. 11. Dependence of interstrip capacitance
on the bias voltage
All carried out measurements are qualitatively
compounded with the above-stated explanation. As it is
visible from Figs. 2-4,11,12, interstrip capacitance at
frequency 1 MHz practically does not vary at the
moment of n+ strips separation, whereas at frequency
1 kHz varies considerably, that confirms by
measurements of the dissipation factor and is in the
good coordination with behavior of interstrip resistance.
From Figs. 11,12 it is possible to see, that at the same
frequency more sensing is measuring capacitance on the
serial equivalent circuit, whereas it does not influence
the dissipation factor.
0 -10 -20 -30 -40 -50 -60
-25
-20
-15
-10
-5
0
5
10
15
D
Voltage
D parallel at 1kHz
D serial at 1kHz
D parallel at 1MHz
D serial at 1MHz
Fig. 12. Dependence D from the bias voltage
0 2 4 6 8 10 12 14 16 18 20 22 24
10kOhm
100kOhm
1MOhm
10MOhm
100MOhm
1GOhm
10GOhm
R is
Strip
Fig. 13. Distribution of interstrip resistance
0 2 4 6 8 10 12 14 16 18 20 22 24 26
0,0F
20,0pF
40,0pF
60,0pF
80,0pF
100,0pF
120,0pF
140,0pF
C
is
Strip
C
is
parallel at 1kHz
C
is
serial at 1kHz
Fig. 14. Distribution of interstrip capacitance
at frequency 1 kHz
0 2 4 6 8 10 12 14 16 18 20 22 24
4,0pF
4,2pF
4,4pF
4,6pF
4,8pF
5,0pF
5,2pF
5,4pF
5,6pF
5,8pF
C
is
Strip
Cis serial at 1MHz
Cis parallel at 1MHz
Fig. 15. Distribution of interstrip capacitance
at frequency 1 MHz
At measuring capacitance of strips having low
interstrip resistance, has appeared, that capacitance at
frequency 1 MHz has practically identical quantity on
strips with low and high interstrip resistance.
Capacitance at frequency 1 kHz varies on an order of
magnitude at diminution of interstrip resistance up to
0.5 MOhm and on 30…50 % at diminution of resistance
up to several tens MOhm (Fig. 7,8,13-15).
Fig. 16. Equivalent circuits of the capacitor
As was found out at testing the detector with punch -
through bias system, the measuring of interstrip
capacitance is not capable reveal all types of defects of
this detector. As it is visible from Fig. 13 and Fig. 14,
we have higher value of interstrip capacitance only on
"pair" strips with low resistance, whereas "single" strips
have normal capacitance. It is possible to explain as
follows: at low interstrip resistance on two next strips
we have a break of the p+ stop structure between these
strips. It is natural influences on quantity of interstrip
capacitance and resistance. At low interstrip resistance
on one strip we have the break of the p+ stop structure
between the strip and a bias line. This defect is defined
at measuring of interstrip resistance by virtue of
specificity of the used circuit, but any way does not
influence in interstrip capacitance. On detectors with
polysilicon resistors this type of defect misses because
of constructional features.
CONCLUSIONS
The carried out examinations and obtained results
show that interstrip capacitance strongly depends on
measuring frequency. At low frequency (1 kHz)
behavior of the interstrip capacitance is in good
agreement with behavior of the interstrip resistance. At
high frequency value of the interstrip capacitance
practically dos not depend on the value of the interstrip
resistance and is most “clean” physical value. One can
make conclusions that for measuring interstrip
capacitance it is necessary to choose different
frequencies depending on the purpose of measurements.
So for physical measurements of quantity of interstrip
capacitance it is necessary to use the peak frequency, in
our case 1 MHz, as thus the contortions imported to
measuring by serial resistance, are minimal. As to use of
measurements of interstrip capacitance for the detection
of technological defects, the low frequency is more
appropriate. The spent examinations have shown an
opportunity of the technological defects detection for
the detector with polysilicon resistors. For the detector
with punch - through bias system such use has appeared
of restricted because of the measuring of interstrip
capacitance on this type of detectors does not detect all
defects, which can be detected at measuring of interstrip
resistance.
REFERENCES
1. M. Elsing. The DELPHI Silicon Tracker in the
global pattern recognition // Nucl. Instr. and Meth. A
2000, v. 447, p. 76.
2. S. Bettarini. The design and construction of the
BaBar Silicon Vertex Tracker // Nucl. Instr. and
Meth. A 2000, v. 447, p. 15.
3. C. Coldewey. The ZEUS Microvertex Detector //
Nucl. Instr. and Meth. A 2000, v. 447, p. 44.
4. B. Schwingenheuer. The status of the HERA B
vertex detector // Nucl. Instr. and Meth. A 2000, v. 447
p. 61.
5. M. Naraian. Silicon Track Trigger for theDO
Experiment // Nucl. Instr. and Meth. A 2000, v. 447,
p. 223.
6. N. Zeisev. The LHCb vertex triggers // Nucl. Instr.
and Meth. A 2000, v. 447, p. 235.
7. P. Kuijer, The Alice Silicon Strip Detector System //
Nucl. Instr. and Meth. A 2000, v. 447, p. 251.
8. N.L. Bruner et al. Characterization procedure for
double-sided silicon microstrip detectors // Nucl.
Instr. and Meth. A 1995, v. 362, p. 315-337.
9. M. Caria, E. Fiandrini. Characterization of large
series of double sided silicon microstrip detectors.
Italy: Preprint INFN/AE-96/03, 1996.
10. V.I. Kulibaba N.I. Maslov, S.V. Naumov,
V.D. Ovchinnik, S.M. Potin, A.F. Starodubtsev.
Development and application of a silcon coordinate
detectors // Problems of Atomic Science and
Technology. Series: Nuclear Physics Investigations.
2003, №2(41), p. 85-88.
11. M.A. Frautschi et al. Capacitance Measurements of
Double-Sided Silicon Microstrip Detectors, Preprint
FERMILAB-Pub-96/008-E, 1996.
12. C. Bozzi et al. Characterization and simulation of
CMS-type silicon microstrip detectors, // Il Nuovo
Cimento. 1999, v. 112 A, №1-2, p. 67-74.
13. T. Akimoto et al. Characteristics of irradiated silicon
microstrip detectors with < 1 0 0 > and < 1 1 1 >
substrates // Nucl. Instr. and Meth. A 2001, v. 466,
p. 354-358.
14. G.F. Dalla Betta et al. Feasibility study for double-
sided silicon microstrip detector fabrication at IRST
// Nucl. Instr. and Meth. A 1999, v. 431, p. 83-91.
ВЗАИМОВЛИЯНИЕ ВЕЛИЧИН МЕЖСТРИПОВЫХ ЕМКОСТИ И СОПРОТИВЛЕНИЯ
ДВУХКООРДИНАТНОГО МИКРОСТРИПОВОГО ДЕТЕКТОРА
Н.И. Маслов, С.М. Потин, А.Ф. Стародубцев
Исследована зависимость межполосковой емкости двухстороннего микрополоскового детектора от
частоты измерения. Изучено, при какой частоте измерений результаты измерений межполосковой емкости
наиболее согласуются с величиной межполоскового сопротивления. По полученным результатам сделаны
выводы о возможности применения измерения межполосковой емкости для обнаружения дефектов
микрополосковых детекторов на этапе их тестирования.
ВЗАЄМОВПЛИВ ВЕЛИЧИН МЕЖСМУГОВИХ ЄМНОСТІ ТА ОПОРУ ДВОХКООРДИНАТНОГО
МІКРОСМУГОВОГО ДЕТЕКТОРУ
М.І. Маслов, С.М. Потін, О.Ф. Стародубцев
Досліджено залежність міжсмугової ємності двостороннього мікросмугового детектора від частоти
вимірювання. Вивчено, при якій частоті вимірювання результати вимірювання міжсмугової ємності
найбільш співпадають зі значенням міжсмугового опору. По отриманим результатам зроблено висновки про
можливість застосування вимірювання міжсмугової ємності для знаходження дефектів мікросмугових
детекторів на етапі їхнього тестування.
|