Transfer matrix for a high energy cooling system
A transfer matrix for a high-energy electron cooling system, which describes the linear incoherent effects, is derived. Knowing this matrix we can treat an electron cooling section in the ring as an additional focusing element deforming the beam optic functions due to space charge forces This matrix...
Gespeichert in:
Datum: | 2004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/80616 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Transfer matrix for a high energy cooling system / A. Dolinskii, P. Zenkevich // Вопросы атомной науки и техники. — 2004. — № 5. — С. 155-157. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-80616 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-806162015-04-20T03:01:59Z Transfer matrix for a high energy cooling system Dolinskii, A. Zenkevich, P. Теория и техника ускорения частиц A transfer matrix for a high-energy electron cooling system, which describes the linear incoherent effects, is derived. Knowing this matrix we can treat an electron cooling section in the ring as an additional focusing element deforming the beam optic functions due to space charge forces This matrix can be implemented in different codes (MAD, MIRKO, SixTrack et al.) for precise calculation of the beam optic and dynamic aperture in storage rings, where a high energy electron cooling system is planed to install. As an example, an optic of the high-energy storage ring [6] calculated by MAD code with derived matrix is given. Виводиться матриця переходу для високоенергетичної системи електронного охолодження, яка описує лiнiйнi некогерентнi ефекти. Така матриця дозволяє розглядати секцію електронного охолодження у кiльцi, як додатковий фокусуючий елемент, який спотворює оптичнi функцii внаслiдок сил просторового заряду. Отримана матриця може використовуватися у рiзних програмах (MAD, MIRKO, SixTrac та iнших) для проведення прецизiйних розрахункiв оптики пучка та динамiчної апертури нагромаджувальних кiлець, де планується планується установка высокоенергетичних систем электронного охлаждения. Як приклад наведено розрахунок оптики високоенергетичного нагромаджувального кiльця [6], виконаний за допомогою програми MAD та виведеної матрицi. Выводится матрица перехода для высокоэнергетической системы электронного охлаждения, которая описывает линейные некогерентные эффекты. Такая матрица позволяет рассматривать секцию электронного охлаждения в кольце, как дополнительный фокусирующий элемент, искажающий оптические функции вследствие сил пространственного заряда. Полученная матрица может использоваться в различных программах (MAD, MIRKO, SixTrac и др.) для проведения прецизионных расчетов оптики пучка и динамической апертуры в накопительных кольцах, где планируется установка высокоэнергетических систем электронного охлаждения. В качестве примера приведен расчет оптики высокоэнергетического накопительного кольца [6], выполненный с помощью программы MAD и выведенной матрицы. 2004 Article Transfer matrix for a high energy cooling system / A. Dolinskii, P. Zenkevich // Вопросы атомной науки и техники. — 2004. — № 5. — С. 155-157. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.17.+w, 29.27.-a, 29.27.Eg, 02.90.+p http://dspace.nbuv.gov.ua/handle/123456789/80616 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Dolinskii, A. Zenkevich, P. Transfer matrix for a high energy cooling system Вопросы атомной науки и техники |
description |
A transfer matrix for a high-energy electron cooling system, which describes the linear incoherent effects, is derived. Knowing this matrix we can treat an electron cooling section in the ring as an additional focusing element deforming the beam optic functions due to space charge forces This matrix can be implemented in different codes
(MAD, MIRKO, SixTrack et al.) for precise calculation of the beam optic and dynamic aperture in storage rings,
where a high energy electron cooling system is planed to install. As an example, an optic of the high-energy storage
ring [6] calculated by MAD code with derived matrix is given. |
format |
Article |
author |
Dolinskii, A. Zenkevich, P. |
author_facet |
Dolinskii, A. Zenkevich, P. |
author_sort |
Dolinskii, A. |
title |
Transfer matrix for a high energy cooling system |
title_short |
Transfer matrix for a high energy cooling system |
title_full |
Transfer matrix for a high energy cooling system |
title_fullStr |
Transfer matrix for a high energy cooling system |
title_full_unstemmed |
Transfer matrix for a high energy cooling system |
title_sort |
transfer matrix for a high energy cooling system |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Теория и техника ускорения частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/80616 |
citation_txt |
Transfer matrix for a high energy cooling system / A. Dolinskii, P. Zenkevich // Вопросы атомной науки и техники. — 2004. — № 5. — С. 155-157. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dolinskiia transfermatrixforahighenergycoolingsystem AT zenkevichp transfermatrixforahighenergycoolingsystem |
first_indexed |
2025-07-06T04:37:02Z |
last_indexed |
2025-07-06T04:37:02Z |
_version_ |
1836870924477923328 |
fulltext |
TRANSFER MATRIX FOR A HIGH ENERGY COOLING SYSTEM
A. Dolinskiia,b, P. Zenkevichc
a Institute for Nuclear Research, Kiev, Ukraine
bGesellschaft für Schwerionenforschung, Darmstadt, Germany
c Institute of Theoretical and Experimental Physics, Moscow, Russia
e-mail: A. Dolinskii@gsi.de
A transfer matrix for a high-energy electron cooling system, which describes the linear incoherent effects, is de-
rived. Knowing this matrix we can treat an electron cooling section in the ring as an additional focusing element de-
forming the beam optic functions due to space charge forces This matrix can be implemented in different codes
(MAD, MIRKO, SixTrack et al.) for precise calculation of the beam optic and dynamic aperture in storage rings,
where a high energy electron cooling system is planed to install. As an example, an optic of the high-energy storage
ring [6] calculated by MAD code with derived matrix is given.
PACS: 29.17.+w, 29.27.-a, 29.27.Eg, 02.90.+p
1. INTRODUCTION
The electron cooling method is based on the heat ex-
change between the beam of charged heavy particles
(ions) circulating in the storage ring and the beam of
electrons having the same average velocity [1,2]. By
combining an ion beam and a high-intensity electron
beam having a small momentum spread in a rectilinear
storage section, it is possible to achieve efficient energy
exchange between them. The electron beam passing
through the cooling section is lost in the collector and
takes some of the ion beam thermal energy with it,
which leads to an effective reduction in the transverse
dimension and the momentum spread in the initial ion
beam. At low ion beam intensities electron cooling is
successfully used in many devices and a space charge
focusing of the electron beam may not significantly per-
turb the lattice functions. However, on transition to
higher energy ion beam (more then 1 GeV/u) there is
tendency to enhancement parameters of an electron
cooling section (ECS) to have reasonable small cooling
time. In this case the ECS in the ring may treated as an
additional focusing element deforming the beam optic
functions due to space charge forces.
To write the equation of motion of ions in electron
beam, from which the transfer matrix for an electron
cooling section can be derived, we consider the hydro-
dynamic approximation assuming that ion and electron
temperatures are zero and the beams undergo simultan-
eous coherent transverse motion. The particle density in
the beams is radially uniform and the beam radii are the
same. The conducting wall is removed to infinity and
image charges have no influence on the beam dynamic.
The beams are matched for a time shorter than all the
other characteristic times of the problem. Outside the
cooling section the beam propagates in the storage ring
with azimuthally focusing symmetry. We use a simple
model to analyse the influence of the finite time of joint
beam motion on the interaction of the electron and ion
beams.
2. EQUATION
The equation of linear motion of the circulation anti-
proton beam in the electron cooling section with ac-
count of the space charge field and longi-tudinal mag-
netic field has the following form [3]
02
2
2
=Ω+Ω ±
±±
cc
cL
c
c u
ds
dui
ds
ud
. (1)
Here subscript c refers to the circulating beam, u±=x±iy
describes transverse displacement of the particles in
complex notation motion (x, y are the horizontal and
vertical displacements respectively),
β γ2cAm
ZeB
p
sL =Ω
is the Larmour frequency of the circulating beam, Z, A
are the charge and mass of the ion, Bs is the longitudinal
magnet field in the cooler, mp is the mass of the proton,
e is the electron charge, c is the light velocity, β=v/c, v
is the ion velocity, γ is the relativistic parameter.
2
,
22 )1( eccc Ω+−=Ω ηηγ , 32
2
,
2
γβ
π
A
Zrn pe
ec =Ω
are circulating beam frequencies, where ηc=Ic/Ie charac-
terises the focusing of ions due to space charge forces in
the cooler section (Ic , Ie are ion and electron currents re-
spectively), η is the neutralization factor [4], γ2η de-
scribes the focusing due to neutralization of ions, ne is
the electron density in the cooler, rp is the classical pro-
ton radius. Eugenfrequencies of the Eq. (1) are
2
2
2
2,1 22 c
LL
Ω+
Ω
±
Ω
±=Ω (2)
Solution of Eq.(1) can be written in matrix forms:
′
=
′ +
+
+
+
)()( 0
0
u
u
M
u
u
,
′
=
′ −
−
−
−
)(
~
)( 0
0
u
u
M
u
u
Here M is the second order complex matrix, M~ is the
complex conjugated matrix. The elements of this matrix
are given by the following formulae ( ( ) 22
2 c
LK Ω+Ω= ):
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5.
Series: Nuclear Physics Investigations (44), p. 155-157. 155
+Ω±
Ω=+ )cos()sin(
22
exp)(11 KsKs
K
isisM
LL
, (3a)
K
KssisM
L )sin(
2
exp)(12
Ω=+ , (3b)
)sin(
2
exp)(
2
21 Ks
K
sisM c
L Ω
Ω=+ , (3c)
+Ω±
Ω=+ )cos()sin(
22
exp)(22 KsKs
K
isisM
LL
, (3d)
If K2<0 one should substitute in Eq. (3) instead of
cos(Ks) and sin(Ks)/K the expressions )cosh( sK and
( ) KsK /sinh . One can see that the elements of the
complex matrix depend on the longitudinal variable s
and K, ΩL, Ωc parameters. For practical simulations it is
necessary to write a real transfer matrix for the cooling
section. The expressions (3) allows us to find the real
matrix Tcool of fourth order related with real coordinates by:
′
′
=
′
′
0
0
0
0
y
y
x
x
T
y
y
x
x
cool . (4)
The matrix Tcool is expressed through the matrix M us-
ing the following formula:
−
=
AB
BA
Tcool , (5)
where A=Re(M), B=-Im(M). The elements of this mat-
rix are given by formulae
ΩΩ+
Ω= sKs
K
sKssA
LLL
2
sin)sin(
22
cos)cos()(11 ,
)sin(1
2
cos)(12 Ks
K
ssA
L
Ω= ,
ΩΩ= sKs
K
sA
L
c
2
sin)sin(
2
)(
2
21 ,
ΩΩ−
Ω= sKs
K
sKssA
LLL
2
sin)sin(
22
cos)cos()(22 , (6)
ΩΩ−
Ω= sKs
K
sKssB
LLL
2
cos)sin(
22
sin)cos()(11 ,
K
KsssB
L )sin(
2
sin)(12
Ω= ,
ΩΩ= sKs
K
sB
L
c
2
sin)sin(
2
)(
2
21 ,
ΩΩ+
Ω= sKs
K
sKssB
LLL
2
cos)sin(
22
sin)cos()(22 .
The matrix elements satisfy the relations: det(Tcool)=1,
det(M)=1. The transfer matrix of a circular accelerator
is Tper=T1Tcs, where T1 is the transfer matrix from the
Electron Cooling Section (ECS) exit to the ECS en-
trance, Tcs is the transfer matrix of the cooler section in-
cluding fringing fields of the solenoind. The transfer
matrix for the cooler section taking account fringing
fields of solenoid is written by Tcs=T-
sfTcoolT+
sf, where T±
sf
are matrices for the fringing fields.
3. APPLICATION TO THE HESR
A planned high energy storage ring (HESR) for in-
ternal experiments with antiprotons at a maximum kin-
etic energy of 14.5 GeV is part of the GSI (Gesellschaft
für Schwerionenforschung) future project [5]. The beam
quality of 2x10-5 and the high average luminosity of
2x1032 c-1cm-2 are main objectives of the HESR [6]. Ob-
viously, such parameters can by achieved by strong
electron beam cooling, which is mandatory for high lu-
minosity as well as for high energy and angular resolu-
tion. A cold electron beam at energies up to 8 MeV
(corresponding to an antiproton energy of 14 GeV) with
an electron current of up to 1 A are required with radius
of 3 mm. A high cooling rate can be achieved only by
the co-called magnetized cooling. It requires a strong
longitudinal magnetic field (B=0.5 T) that guides the
electron beam along the entire interaction region of up
to 30 m length. The electron cooling system with such
parameters is a straight-forward from a physical point of
view although the technical realisation seems to be
rather challenging. In a storage ring such electron cool-
ing system will be as additional focusing element influ-
encing on the beam dynamic of antiprotons beams due
to space charge forces.
In order to determine the complete dynamics of the
beam in the storage ring one needs to supplement the
matrix of the cooling section with the matrix describing
the ion beam motion in the storage ring. That can be
done by using ion-optical codes (for instance MAD,
TRANSPORT) where the external matrix is possible to
introduce.
We calculate the lattice functions of the HESR with
and without ECS by MAD code, introducing the trans-
fer matrix, which elements are calculated by formulae
(6). The parameters used to derive proper transfer mat-
rix of the ECS are given in the Table.
Antiproton energy [GeV] 1.3
Magnet rigidity, BR, [Tm] 6.17
Neutralization factor, η 0.01
Solenoid field strength, Bs [T] 0.0
Electron beam radius,a [mm] 3
Electron beam current, Ie, [A] 1
Length of cooling section, Lcool [m 30
ΩL=Bs/BR 0.044
The lattice functions over the HESR, where the ECS
is treated as a drift space, are shown in Fig. 1. This is a
desired beta function distribution over the ring. A small
value of beta functions (1 m) in both planes is required
at the internal target and large ones (100 m) at the ECS.
At high energy of antiprotons (more than 3 GeV) the
ECS influences on the lattice functions is weak. Hence
there is no need to make additional matching of the
cooler section with optic of the rest ring. If the energy of
antiprotons is below 3 GeV the lattice function of the
ring is changed drastically. To demonstrate the influence of
the ECS on the lattice functions only due to space charge
focusing of the electron beam in the ECS we exclude the
longitudinal magnetic field from our simulation.
Fig. 1. Lattice functions of the HESR. The ECS is
treated as drift space
Fig. 2. Lattice functions of the HESR. The ECS with
electron beam but without longitudinal magnetic field
Fig. 2 shows the beta function perturbation over the
ring at the energy of antiproton of 1.3 GeV. It should be
noted that according to the matrix elements given by
formulae (6) the betatron motion in the ring is coupled.
Therefore the Twiss in MAD are computed in coupled
functions in the sense of Edwards and Teng paramet-
erisation [7]. In this case the additional matching
between arcs and a straight section, where the ECS is
placed, is needed.
4. CONCLUSIONS
The transfer matrix for cooling section with a high
electron density and strong longitudinal magnetic field
is presented. It was shown on the example of the HESR
that space charge focusing may significantly perturb the
lattice functions causing a big enough tune shift and ac-
ceptance reduction of the circular accelerator. In this
case additional matching of the ring optic functions with
the ECS depending on the energy should be considered
on the designing stage of the machine.
REFERENCES
1. Ya.S. Derbenev, A.N. Skrinsky. The effect of an ac-
companying magnetic field on electron cooling //
Particle Accelerator. 1978, v. 8, p. 235-243.
2. I.N. Meshkov. Electron cooling: Status and perspec-
tives // Phys. Part. Nucl. 1994, v. 25(6), p. 631.
3. P.R. Zenkevich,A.E. Bolshakov. Influence of elec-
tron cooler on dipole ion oscillations in high-current
storage ring // NIM. 2000, v. A441, p.36-39.
4. J. Bosser et al. Experimantal studies of electron
beam neutralization // NIM. 1997, v. A391, p. 103-
106.
5. An International Accelerator Facility for Beam of
Ion and Antiprotons, GSI, Darmstadt, November,
2001 (see www.gsi.de).
6. B. Franzke et al. Conceptual design of a facility for
internal target experiments with antiprotons up to
15 GeV/c. Proc. of EPAC 2002, Paris, France, p.
575.
7. D.A. Edwards and L.C. Teng. Parameterisation of
linear coupled motion in periodic systems. IEEE
Trans. on Nucl. Sc.20: 885, 1973.
МАТРИЦА ПЕРЕХОДА ДЛЯ ВЫСОКОЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ
ЭЛЕКТРОННОГО ОХЛАЖДЕНИЯ
А. Долинский, П. Зенкевич
Выводится матрица перехода для высокоэнергетической системы электронного охлаждения, которая
описывает линейные некогерентные эффекты. Такая матрица позволяет рассматривать секцию электронного
охлаждения в кольце, как дополнительный фокусирующий элемент, искажающий оптические функции
вследствие сил пространственного заряда. Полученная матрица может использоваться в различных програм-
мах (MAD, MIRKO, SixTrac и др.) для проведения прецизионных расчетов оптики пучка и динамической
апертуры в накопительных кольцах, где планируется установка высокоэнергетических систем электронного
охлаждения. В качестве примера приведен расчет оптики высокоэнергетического накопительного кольца
[6], выполненный с помощью программы MAD и выведенной матрицы.
МАТРИЦЯ ПЕРЕХОДУ ДЛЯ ВИСОКОЕНЕРГЕТИЧНОЇ СИСТЕМИ ЕЛЕКТРОННОГО ОХОЛОДЖЕННЯ
А. Долинський, П. Зенкевич
Виводиться матриця переходу для високоенергетичної системи електронного охолодження, яка описує
лiнiйнi некогерентнi ефекти. Така матриця дозволяє розглядати секцію електронного охолодження у кiльцi,
як додатковий фокусуючий елемент, який спотворює оптичнi функцii внаслiдок сил просторового заряду.
Отримана матриця може використовуватися у рiзних програмах (MAD, MIRKO, SixTrac та iнших) для
проведення прецизiйних розрахункiв оптики пучка та динамiчної апертури нагромаджувальних кiлець, де
планується планується установка высокоенергетичних систем электронного охлаждения. Як приклад наве-
дено розрахунок оптики високоенергетичного нагромаджувального кiльця [6], виконаний за допомогою
програми MAD та виведеної матрицi.
А. Долинский, П. Зенкевич
А. Долинський, П. Зенкевич
|