Magnetic field of heliotron and mirror-type magnetic system combination

In numerical calculations for the model of combined magnetic system a possibility of existence of closed magnetic surfaces is shown. The model comprises the magnetic system of l=2 torsatron without additional toroidal magnetic field coils (heliotron) with a single current-carrying turn as an ele...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Kotenko, V.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81169
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Magnetic field of heliotron and mirror-type magnetic system combination / V.G. Kotenko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 22-25. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81169
record_format dspace
spelling irk-123456789-811692015-05-12T03:02:04Z Magnetic field of heliotron and mirror-type magnetic system combination Kotenko, V.G. Магнитное удержание In numerical calculations for the model of combined magnetic system a possibility of existence of closed magnetic surfaces is shown. The model comprises the magnetic system of l=2 torsatron without additional toroidal magnetic field coils (heliotron) with a single current-carrying turn as an element of the mirror-type magnetic system. The turn encircles the heliotron closed magnetic surface region and produces a magnetic field of opposite direction to the heliotron magnetic field. Численными расчётами показана возможность существования замкнутых магнитных поверхностей в модели комбинированной магнитной системы. В состав модели входят магнитная система 2-заходного торсатрона без катушек дополнительного тороидального магнитного поля (гелиотрон) и магнитная система пробкотрона в виде одиночного витка с током. Виток охватывает область существования замкнутых магнитных поверхностей гелиотрона и по отношению к магнитному полю гелиотрона создает магнитное поле встречного направления. Чисельними розрахунками показана можливість існування замкнутих магнітних поверхонь у моделі комбінованої магнітної системи. До складу моделі належить магнітна система 2-заходного торсатрона без котушок додаткового тороїдального магнітного поля (геліотрон) та магнітна система пробкотрона у вигляді одного кільця зі струмом. Кільце охоплює область існування магнітних поверхонь геліотрона і створює по відношенню до магнітного поля геліотрона магнітне поле зустрічного напрямку. 2014 Article Magnetic field of heliotron and mirror-type magnetic system combination / V.G. Kotenko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 22-25. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.55.Hc http://dspace.nbuv.gov.ua/handle/123456789/81169 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Kotenko, V.G.
Magnetic field of heliotron and mirror-type magnetic system combination
Вопросы атомной науки и техники
description In numerical calculations for the model of combined magnetic system a possibility of existence of closed magnetic surfaces is shown. The model comprises the magnetic system of l=2 torsatron without additional toroidal magnetic field coils (heliotron) with a single current-carrying turn as an element of the mirror-type magnetic system. The turn encircles the heliotron closed magnetic surface region and produces a magnetic field of opposite direction to the heliotron magnetic field.
format Article
author Kotenko, V.G.
author_facet Kotenko, V.G.
author_sort Kotenko, V.G.
title Magnetic field of heliotron and mirror-type magnetic system combination
title_short Magnetic field of heliotron and mirror-type magnetic system combination
title_full Magnetic field of heliotron and mirror-type magnetic system combination
title_fullStr Magnetic field of heliotron and mirror-type magnetic system combination
title_full_unstemmed Magnetic field of heliotron and mirror-type magnetic system combination
title_sort magnetic field of heliotron and mirror-type magnetic system combination
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/81169
citation_txt Magnetic field of heliotron and mirror-type magnetic system combination / V.G. Kotenko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 22-25. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kotenkovg magneticfieldofheliotronandmirrortypemagneticsystemcombination
first_indexed 2025-07-06T05:32:49Z
last_indexed 2025-07-06T05:32:49Z
_version_ 1836874479098134528
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) 22 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, № 6. Series: Plasma Physics (20), p. 22-25. MAGNETIC FIELD OF HELIOTRON AND MIRROR-TYPE MAGNETIC SYSTEM COMBINATION V.G. Kotenko Institute of Plasma Physics NSC KIPT, Kharkov, Ukraine In numerical calculations for the model of combined magnetic system a possibility of existence of closed magnetic surfaces is shown. The model comprises the magnetic system of l=2 torsatron without additional toroidal magnetic field coils (heliotron) with a single current-carrying turn as an element of the mirror-type magnetic system. The turn encircles the heliotron closed magnetic surface region and produces a magnetic field of opposite direction to the heliotron magnetic field. PACS: 52.55.Hc INTRODUCTION As a fusion neutron source for the sub-critical fast hybrid reactor the magnetic plasma trap has been proposed on the basis of the combination of magnetic systems including a stellarator-type magnetic system and a conventional mirror-type system [1]. In numerical calculations for the combined magnetic system (CMS) model the study of a magnetic field has been carried out [2]. The model comprises a stellarator-type magnetic system of the l=2 torsatron with additional toroidal magnetic field coils with a single current-carrying turn as an element of the mirror magnetic system. The turn encircled the torsatron closed magnetic surface region and produced a magnetic field of unidirectional or opposite direction relative to the torsatron magnetic field. In the CMS model, taking into account the width of helical coils and that of additional toroidal magnetic field coils, the mirror-type magnetic system was realized by switching off one of the additional toroidal magnetic field coils [3]. In this paper the magnetic field of the CMS where the stellarator-type magnetic system is an l=2 torsatron without additional toroidal magnetic field coils, i.e. the model of a heliotron-type magnetic system is investigated. As is known [4], a similar magnetic system is in operation in the LHD heliotron magnetic plasma trap of steady- state action. 1. CALCULATION MODEL OF A HELIOTRON MAGNETIC SYSTEM The calculation model of a heliotron magnetic system is schematically represented in Fig. 1. The main geometrical characteristics of the initial calculation model of the heliotron magnetic system are as follows: – toroidicity α=a/R0=0.25, a is the minor radius of the torus, R0 is the major radius of the torus; – l=2 is the polarity; – m=6 is the number of helical coil pitches along the length of the torus, i.e., helical coil pitch parameter is p=mα =1.5; – each of the helical coils of the calculation model comprises one filament-like conductor; – the helical coils are wound on the torus according to the cylindrical helix law, 1=m , and denotes the poloidal angle and the toroidal angle consequently. Fig. 1 also presents the projection of the last closed magnetic surface (LCMS), onto the equatorial torus plane. It is seen that the LCMS minor radius has a comparable value with the torus minor radius. a b Fig. 1. Top view of the heliotron helical coils and the LCMS (a) and the CMS with the current-carrying turn ( =180º) and the LCMS (b). The toroidal azimuths of poloidal cross-sections are indicated (see Fig. 2, 4) ISSN 1562-6016. ВАНТ. 2014. №6(94) 23 φ=0º 7.5º 15º 180º Fig. 2. Magnetic surface cross-sections in the initial heliotron Fig. 2 shows the poloidal cross-sections of the magnetic surface configurations calculated for heliotron initial calculation model. The outer circle represents the torus cross-sections with traces of helical coils (large black points). The cross-sections are spaced apart by the toroidal angle φ (see Fig. 1) within the limits of the magnetic field half-period, φ=0º, 7.5º, 15º. The cross- section φ=180º at the assumed position of the turn is also presented. From the figure one can see that the size of the region of magnetic surface existence does not depend on the cross-section toroidal azimuth. In all the cross-sections the average radius of the last closed magnetic surface is the same, rlc/R0=0,18 (rlc/a=0,72). The magnetic surface configuration shapes in the cross-sections =0º and =180º are identical. It is also seen from Fig.2, that in all the cross sections the magnetic axis traces are disposed in the equatorial torus plane, its major radius R0ax/R0=0,978<1, i.e. the initial configuration of magnetic surfaces is in the mode with a planar magnetic axis and is shifted inward the torus. The mode can be realized with a uniform transverse compensating magnetic field Bz/B0=0.25, where B0 is the amplitude of the toroidal component of the magnetic field generated by helical coils on the circular axis of the torus. From Fig. 2 one can see, that magnetic surfaces are elongated along the vertical z-axis of the torus in the central part of the magnetic surface configuration. The magnetic surface ellipticity parameter is not lesser than 2 in the vicinity of the magnetic axis. So, on the analogy with present-day tokamaks, which have a noncircular D- shaped poloidal cross-section, in the central part of the plasma core of the heliotron under consideration one can expect the double increase in the limiting β-value. The magnetic surface parameters as a function of their average radius r/R0 are shown in Fig. 5 by dotted lines. From the figure it follows that the rotational transform angle ( is in 2 units) increases with radius increasing =0.1 0.91, there is a magnetic hill U=0 0.23, and the mirror ratio γ=Bmax/Bmin=1.003 2.66. The parameter values for the last closed magnetic surface together with its average radius (in brackets) are indicated by lettering to the curves. 2. CALCULATION MODEL OF THE CMS In the CMS under consideration the current- carrying turn takes place in the torus poloidal cross- section at the toroidal azimuth =180º (see Fig.1,b). The turn radius at/R0=0.35, the turn center is on the circular axis of the torus The ratio of the turn current to the helical coil current is It/Ih=-0.36. Thus in the turn center the current produces a magnetic field B0t in the opposite direction relative to the torsatron guiding magnetic field B0t=-0.27B0. Fig. 1,b presents the LCMS projection onto the equatorial torus plane. It is seen that superposition of the turn magnetic field diminishes the LCMS radius by a factor of ~2. Fig. 3 represents the calculated poloidal cross sections of magnetic surfaces in the CMS. The average value of the last closed magnetic surface radius gradually increases from rlc/R0=0.09 in the cross-section φ=0º to rlc/R0=0.11 in the cross-section φ=180º.The island structure arises at the edge of the magnetic surface configuration. The magnetic axis looses the circle shape in the CMS. It is evidenced by the observed dependence of the magnetic axis trace position at the toroidal -azimuth of the poloidal cross-section. So, Rax/Ro=0.983 in the φ=0º cross-section and Rax/Ro=1.003 in φ=180º cross-section. φ=0º 7.5º 15º 180º Fig. 3. Poloidal cross-sections of magnetic surfaces in the CMS 24 ISSN 1562-6016. ВАНТ. 2014. №6(94) Fig. 4. Parameters of magnetic surfaces as a function of their average radius in the heliotron (dotted lines) and CMS (solid lines) The radial dependences of the CMS magnetic surface parameters are shown in Fig. 4 by solid lines. It is seen from the figure that the value of the rotational transform angle changes (ι is in 2 units) within the limits ιaxis ιlcms=0.12 0.31. The mirror ratio on the last closed magnetic surface is slightly decreased and that on the magnetic surfaces near by the magnetic axis is significantly increased as compared with the initial configuration =1,4 2.28. The high magnetic hill in the initial configuration is almost vanished, U=0.002. 3. MIRROR-TYPE REGION The main aim of CMS is to create a mirror region with a decreased value of magnetic field strength in the heliotron field lines. The mirror region is formed in the vicinity of the turn. Below we shall estimate the longitudinal and transverse sizes of the mirror region and the “effective” value of the mirror ratio. 3.1. THE LONGITUDINAL SIZE OF THE MIRROR REGION To estimate the longitudinal size of the mirror region the behaviour of the CMS magnetic axis characteristics has been investigated (see Fig.5). For comparison the magnetic axis characteristics of the initial heliotron are also presented in Fig. 5 by dotted lines. The top part of Fig. 5 represents the magnetic field strength along the full length of the CMS magnetic axis. One can see from the figure that the mirror region of the magnetic field appears in the vicinity of the turn. Its longitudinal size can be limited by a short interval marked on the abscissa axis around the toroidal angle ∆φ=150...210º. Within these interval the value of the mirror ratio [γax] on the CMS magnetic axis is [γax]=0.95γax=1.33. According to the designations in the figure [γax]=[Bax]/[Bax]min, and γax=Baxmax/[Bax]min. The interval comprises two heliotron magnetic field periods, i.e., the mirror region half-length is L/R0≈0.5. In the initial heliotron γax=1.003 on the full magnetic axis length. The middle part of Fig. 5 shows that the major radius of the CMS magnetic axis exceeds the magnetic axis major radius in the initial heliotron. The major radius of the CMS magnetic axis reaches the maximum value (Rax/R0=1.003) inside the interval at the turn toroidal azimuth. 0 60 120 180 240 φ(deg.) Fig. 5. Characteristics of the magnetic axis along its full length in the initial heliotron (dotted lines) and in the CMS (solid lines): Bax(a.u.) − the magnetic field strength, Rax/R0 − the projection of the magnetic axis major radius onto the equatorial torus plane, Zax/R0- magnetic axis deviation from equatorial torus plane The lower part of Fig. 5 shows the CMS magnetic axis declination from the torus equatorial plane, Zax/R0. The declination value gradually increases as oncoming to the turn azimuth, takes on the extreme values Zax/R0=±0.003 inside the interval, and gets across zero at the turn azimuth. The initial heliotron magnetic axis declination is estimated by the accuracy of the calculation carrying out, |Zax/R0|≈0.001. 3.2. TRANSVERSE SIZE OF THE MIRROR REGION It is evident, that the mirror region comprises not only the sections of field lines forming regular magnetic surfaces, but the sections of field lines of destroyed magnetic surfaces at the periphery. Therefore the radial or cross size of the mirror region exceeds the LCMS cross size in all the poloidal cross sections of the torus. In the calculations the transverse mirror region size was determined under condition that the field line does not escape the torus surface in the interval ∆φ=150…210°. ISSN 1562-6016. ВАНТ. 2014. №6(94) 25 φ=210º 195º 180º 165º 150º Fig. 6. Mirror region cross sections Fig. 6 shows calculated cross sections of the mirror region (tinted). In the cross-sections with φ=150°, 210° at the interval ends the average radius of the mirror region boundary is rend/R0=0.13, inside the interval − rin/R0=0.17. Hence, according to the magnetic flow conservation law an “effective” value of the mirror ratio γeff within the mirror region boundary is equal to γeff=(rin) 2 /(rend) 2 =1.7. The “effective” value of the mirror ratio within the LCMS boundary has the intermediate value, γlceff=1.5. CONCLUSIONS In this study, the numerical calculations of the magnetic field produced by the model of a combined magnetic system were carried out. The model comprises a heliotron-type magnetic system with a single current- carrying turn as an element of the mirror-type magnetic system.The calculations show that the magnetic field produced by the current-carrying turn, being opposite to the heliotron magnetic field diminishes the region of existence of closed magnetic surfaces in the heliotron. In the place of the current-carrying turn a curvilinear mirror region appears. The region comprises the sections of magnetic surface field lines, as well as, the sections of field lines in the edge layer of destroyed magnetic surfaces. The curvilinear mirror region half-length exceeds its transverse maximum size (2rin/R0) by a factor of 1.5 (nonparaxial mirror trap), the average “effective” mirror ratio value is γeff=1.5. Numerical calculations have been obtained using the idealized model regarded as heliotron and mirror-type magnetic systems. The next stage of investigations will evidently meet the necessity to determine the influence of finite size of CMS current-carrying coils. REFERENCES 1. V.E. Moiseenko, K. Noack, O. Ågren. Stellarator- mirror based fusion driven fission reactor // J. Fusion Energy. 2010, v. 29, p. 65-69. 2. V.G. Kotenko, V.E. Moiseenko. Influence of the magnetic field single ripple on the torsatron magnetic surfaces // Voprosy atomnoj nauki i tekhniki. Series”Termoyadrnyj sintex”. 2011, №3, p. 74-80 (in Russian). 3. V.G. Kotenko, V.E. Moiseenko, Yu.F. Sergeev, E.L. Sorokovoy, O. Ågren. Magnetic Surfaces of a Combined Magnetic System // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2012, № 6, p. 22-24. 4. O. Motojima. Status of LHD project and construction // A Collection of Papers Presented at the IAEA Technical Committee Meeting on Stellarators and Other Helical Confinement Systems at Garching, Germany 10- 14 May 1993, IAEA,Vienna, Austria, 1993, p. 41. Article received 03.09.2014 МАГНИТНОЕ ПОЛЕ КОМБИНАЦИИ МАГНИТНЫХ СИСТЕМ ГЕЛИОТРОНА И ПРОБКОТРОНА В.Г. Котенко Численными расчётами показана возможность существования замкнутых магнитных поверхностей в модели комбинированной магнитной системы. В состав модели входят магнитная система 2-заходного торсатрона без катушек дополнительного тороидального магнитного поля (гелиотрон) и магнитная система пробкотрона в виде одиночного витка с током. Виток охватывает область существования замкнутых магнитных поверхностей гелиотрона и по отношению к магнитному полю гелиотрона создает магнитное поле встречного направления. МАГНІТНЕ ПОЛЕ КОМБІНАЦІЇ МАГНІТНИХ СИСТЕМ ГЕЛІОТРОНА ТА ПРОБКОТРОНА В.Г. Котенко Чисельними розрахунками показана можливість існування замкнутих магнітних поверхонь у моделі комбінованої магнітної системи. До складу моделі належить магнітна система 2-заходного торсатрона без котушок додаткового тороїдального магнітного поля (геліотрон) та магнітна система пробкотрона у вигляді одного кільця зі струмом. Кільце охоплює область існування магнітних поверхонь геліотрона і створює по відношенню до магнітного поля геліотрона магнітне поле зустрічного напрямку.