PIC simulation of nonlinear regime wake field excitation in cylindrical resonator

The nonlinear mechanism of saturation of wake field amplitude, exited in the cylindrical resonator partially filled with dielectric by relativistic train of electron bunches numerically simulated by means of a specially elaborated 2.5- dimensional electromagnetic PIC-code.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Markov, P.I., Onishchenko, I.N., Korzh, A.F., Sotnikov, G.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81181
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:PIC simulation of nonlinear regime wake field excitation in cylindrical resonator / P.I. Markov, I.N. Onishchenko, A.F. Korzh, G.V. Sotnikov // Вопросы атомной науки и техники. — 2006. — № 5. — С. 199-202. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81181
record_format dspace
spelling irk-123456789-811812015-05-13T03:01:55Z PIC simulation of nonlinear regime wake field excitation in cylindrical resonator Markov, P.I. Onishchenko, I.N. Korzh, A.F. Sotnikov, G.V. Новые методы ускорения The nonlinear mechanism of saturation of wake field amplitude, exited in the cylindrical resonator partially filled with dielectric by relativistic train of electron bunches numerically simulated by means of a specially elaborated 2.5- dimensional electromagnetic PIC-code. С помощью специально разработанного нами 2.5-мерного электромагнитного PIC–кода численно промоделирован нелинейный механизм ограничения амплитуды кильватерного поля, возбуждаемого в цилиндрическом резонаторе, частично заполненном диэлектриком, релятивистской последовательностью электронных сгустков. Моделирование показало, что нелинейные захватные процессы, вызванные обратным влиянием поля большой амплитуды на заряженные сгустки, приводят к ограничению амплитуды электрического поля в системе. Получено время нарастания амплитуды поля, его амплитуда. Оценено количество электронных сгустков, которые следует инжектировать в резонатор для достижения максимума поля. За допомогою спеціально розробленого нами 2.5-мірного електромагнітного PIC-коду чисельно промодельовано нелінійний механізм обмеження амплітуди кільватерного поля, збуджуваного в циліндричному резонаторі, частково заповненому діелектриком, релятивістською послідовністю електронних згустків. Моделювання показало, що нелінійні захватні процеси, викликані зворотним впливом поля великої амплітуди на заряджені згустки, приводять до обмеження амплітуди електричного поля в системі. Отримано час наростання амплітуди поля, його амплітуду. Оцінено кількість електронних згустків, які слідує інжектувати у резонатор для досягнення максимуму поля. 2006 Article PIC simulation of nonlinear regime wake field excitation in cylindrical resonator / P.I. Markov, I.N. Onishchenko, A.F. Korzh, G.V. Sotnikov // Вопросы атомной науки и техники. — 2006. — № 5. — С. 199-202. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 02.60.Cb, 07.05.Tp http://dspace.nbuv.gov.ua/handle/123456789/81181 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые методы ускорения
Новые методы ускорения
spellingShingle Новые методы ускорения
Новые методы ускорения
Markov, P.I.
Onishchenko, I.N.
Korzh, A.F.
Sotnikov, G.V.
PIC simulation of nonlinear regime wake field excitation in cylindrical resonator
Вопросы атомной науки и техники
description The nonlinear mechanism of saturation of wake field amplitude, exited in the cylindrical resonator partially filled with dielectric by relativistic train of electron bunches numerically simulated by means of a specially elaborated 2.5- dimensional electromagnetic PIC-code.
format Article
author Markov, P.I.
Onishchenko, I.N.
Korzh, A.F.
Sotnikov, G.V.
author_facet Markov, P.I.
Onishchenko, I.N.
Korzh, A.F.
Sotnikov, G.V.
author_sort Markov, P.I.
title PIC simulation of nonlinear regime wake field excitation in cylindrical resonator
title_short PIC simulation of nonlinear regime wake field excitation in cylindrical resonator
title_full PIC simulation of nonlinear regime wake field excitation in cylindrical resonator
title_fullStr PIC simulation of nonlinear regime wake field excitation in cylindrical resonator
title_full_unstemmed PIC simulation of nonlinear regime wake field excitation in cylindrical resonator
title_sort pic simulation of nonlinear regime wake field excitation in cylindrical resonator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Новые методы ускорения
url http://dspace.nbuv.gov.ua/handle/123456789/81181
citation_txt PIC simulation of nonlinear regime wake field excitation in cylindrical resonator / P.I. Markov, I.N. Onishchenko, A.F. Korzh, G.V. Sotnikov // Вопросы атомной науки и техники. — 2006. — № 5. — С. 199-202. — Бібліогр.: 2 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT markovpi picsimulationofnonlinearregimewakefieldexcitationincylindricalresonator
AT onishchenkoin picsimulationofnonlinearregimewakefieldexcitationincylindricalresonator
AT korzhaf picsimulationofnonlinearregimewakefieldexcitationincylindricalresonator
AT sotnikovgv picsimulationofnonlinearregimewakefieldexcitationincylindricalresonator
first_indexed 2025-07-06T05:35:32Z
last_indexed 2025-07-06T05:35:32Z
_version_ 1836874609425645568
fulltext PIC SIMULATION OF NONLINEAR REGIME WAKE FIELD EXCITATION IN CYLINDRICAL RESONATOR P.I. Markov, I.N. Onishchenko, A.F. Korzh, G.V. Sotnikov National Science Center “Kharkov Institute of Physics and Technology” Kharkov, Ukraine E-mail: pmarkov@kipt.kharkov.ua The nonlinear mechanism of saturation of wake field amplitude, exited in the cylindrical resonator partially filled with dielectric by relativistic train of electron bunches numerically simulated by means of a specially elaborated 2.5- dimensional electromagnetic PIC-code. PACS: 02.60.Cb, 07.05.Tp 1. INTRODUCTION The wakefield amplitude excited by a long train of electron bunches in dielectric waveguide is restricted, firstly, by attenuation due to low Q-factor of the resona- tor and, secondly, by nonlinear wave-particle interaction resulting in driver-beam trapping in the potential well of the wake. In this presentation the second mechanism of wakefield amplitude restriction is analyzed. 2. A STATEMENT OF PROBLEM The investigation of a nonlinear stage of the slow wave excitation in the resonator by charged particles bunches (by a train of point electron bunches) was firstly considered in the paper [1]. Maximum attainable amplitude of an electric field was found to be not de- pended on a beam current and the number of injected bunches for obtaining amplitude saturation is inversely depended on beam current. At present along with analytical methods of research there is a possibility of carrying out the detailed numeri- cal simulation. In this presentation by means of a spe- cially elaborated 2.5-dimensional electromagnetic PIC- code the excitation of electromagnetic field by a train of electron bunches in the cylindrical resonator partially filled with dielectric was simulated. The geometry of a calculated model is depicted in the Fig.1. A statement of the problem is the following. Fig.1. Geometry of a design model The train of relativistic electron bunches is injected in the drift chamber through the left-hand boundary of a drift chamber. The bunch radii is . The average elec- tron current is br bI . At the resonator input (at 0z = ) in- jected bunch is monoenergetic. The transversal compo- nents of electron velocities are equal to zero. The system is axially symmetrical. It allows being restricted to the solution of set of Maxwell equations ( ) ( ) ; ; ; ; ; , r r z z z r r z r z HE c j t z E c r H j t r r H E Ec t r z E H Hc j t z r EH c t z H c c E t r r ϕ ϕ ϕ ϕ ϕ ϕ ϕ π π π ∂∂ = − − ∂ ∂ ∂ ∂ = − ∂ ∂ ∂ ∂ ∂ ⎞⎛= −⎜ ⎟∂ ∂ ∂⎝ ⎠ ∂ ∂ ∂ ⎞⎛= − −⎜ ⎟∂ ∂ ∂⎝ ⎠ ∂∂ = ∂ ∂ ∂ ∂ = − ∂ ∂ 4 4 4 where , ,r zE E Eϕ and , ,r zH H Hϕ are the components of electric and magnetic intensity in cylindrical coordi- nate system and , ,r zj j jϕ are the components of cur- rent density in the drift region, at numerical simulation of dynamics of electromagnetic fields. They are calcu- lated by means of the mechanism of «distribution» of currents in nodes of a two-dimensional spatial grid (Fig.2). Fig.2. Spatial grid Thus it is necessary to know a position and velocity of each macroparticle. They are determined from the solution of motion equations ( ) ( ){ } ( ) ; ; , r z r z z r r E r r B z B c r E r z B r B c r r z E z r B r B c ϕ ϕ ϕ β δ ϕ ϕ ϕ β ϕδ ϕ β δ ϕ ⎧ ⎡ ⎤= − + − +⎣ ⎦⎪ ⎪ ⎡ ⎤= − + − −⎨ ⎣ ⎦ ⎪ ⎡ ⎤⎪ = − + −⎣ ⎦⎩ 2 2 ___________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 5. Серия: Плазменная электроника и новые методы ускорения (5), с.199-202. 199 mailto:pmarkov@kipt.kharkov.ua where ( ) ( ) ( ) ( ) , ; ; ; . r z z z z r r r q v c m v r r z r E r E z E c B B H B B H ϕ β ϕ δ ϕ = − = + + = + + = + = + 2 22 2 2 2 0 0 1 200 2 The numerical solution of Maxwell equations and «distribution» of charges were carried out on shifted one from other spatial (Fig.2) and time (Fig.3) grids. Fig.3. Time grid For a time discretization of motion equations the predictor-corrector method was used. Values of the macroparticles velocities are calculated in half-integer points of time (1 2 1 2nt n )τ+ = + , and coordinates — in the integer points of time ( ,p pz r ) nt nτ= ( n is integer, τ is a time step). Thus the values of the fields components, contained in the motion equations, are cal- culated by the linear interpolation from nodes of a grid. Owing to the selected plan, the solution of Maxwell equations is necessary to carry out twice more often, than solution of motion equations. Magnetic field Hϕ is calculated in points of time 1 4nt ± , and zE and in points of time and rE nt 1 2nt + respectively. Boundary conditions for fields consists in referenc- ing to zero of tangential components of an electromag- netic field on walls of the drift chamber. At an initial point of time the value of electromagnetic fields com- ponents are equal to zero; particles in the resonator are absent. 3. THE NUMERICAL ALGORITHM In the issue the operations flowchart on one time step looks like this: 1nt tτ += − n 1. Finding the value of a magnetic field n 1 4 rH + , n 1 4 zH + , n 1 4Hϕ + at time step 1 4nt + ( )1 4 1 4 , r n n r H r nH F H Eϕ + −= ; ( )1 4 1 4 , z n n z H z nH F H Eϕ + −= ; ( )1 4 1 4 , ,n n n n H r zH F H E E ϕϕ ϕ + −= . 2. Calculation the values of components of electric bias- ing vector n 1 2 rD + , n 1 2 zD + and n 1 2Dϕ + at time step 1 2nt + ( )1 2 1 4 1 2, , r n n n r D r rD F D H jϕ + += n− ; ( )1 2 1 4 1 2, , z n n n z D z zD F D H jϕ + += n− ; ( )1 2 1 4 1 4 1 2, , ,n n n n D r zD F D H H j ϕϕ ϕ + + += n ϕ − . 3. Calculation the values of components of electric field n 1 2 rE + , n 1 2 zE + and n 1 2Eϕ + at time step 1 2nt + ,, , 1 2, 1 21 2, 1 2 1 2, 1 2 1 2,1 2, 1 2, 1 2 1 2 1 2 1 2 1 2 1 2 , , . j ij i j i j ij i j i j ij i j i n n rr r n n zz z n n E D E D E D ϕϕ ϕ ε ε ε + ++ + + + ++ + + + + + + + = = = 4. Finding the value of a magnetic field n 3 4 rH + , n 3 4 zH + , 3 4nHϕ + at time step 3 4nt + ( )3 4 1 4 1 2, r n n r H rH F H Eϕ + += n+ ; ( )3 4 1 4 1 2, z n n z H zH F H Eϕ + += n+ ; ( )3 4 1 4 1 2 1 2, ,n n n H r zH F H E E ϕϕ ϕ + + += n+ . Finding the value of a magnetic field n 1 2 rH + , n 1 2 zH + , 1 2nHϕ + at time step 1 2nt + by averaging ( ) ( ) ( ) , , , 1 2, 1 2 1 2, 1 2 1 2, 1 2 1 2, 1 2, 1 2, 1 2 1 4 3 4 1 2 1 4 3 4 1 2 1 4 3 4 2, 2, 2. j i j i j i j i j i j i j i j i j i n n n r r r n n n z z z n n n H H H H H H H H Hϕ ϕ ϕ + + + + + + + + + + + + + + + + + + = + = + = + 5. Solving of motion equations by the predictor- corrector method: a. calculation a preliminary value of an angular ve- locity of macroparticle 1 2nω + ; b. the values of 1nr + , 1nz + , 1n rv + , 1n zv + ; c. finding the values of the same quantities at time step 1 2nt + by averaging; d. calculation a final value of an angular velocity of macroparticle 1 2nω + . 6. Calculating values of a current density zj , rj and ϕj in grid nodes for time step 1 2nt + . 7. Injecting new macroparticles in the drift chamber. 8. Computing the values of a charge density of ρ for time step 1nt + . 9. Calculation the values a components of electric bias- ing vector n 1 rD + , n 1 zD + and n 1Dϕ + at time step 1nt + ( )1 1 2 3 4, , r n n n n r D r rD F D H jϕ + + += 1 2+ ; ( )1 1 2 3 4, , z n n n n z D z zD F D H jϕ + + += 1 2+ ; ( )1 1 2 3 4 3 4, , ,n n n n n D r zD F D H H j ϕϕ ϕ ϕ + + + += 1 2+ . 10. Calculation the values of components of electric field n 1 rE + , n 1 zE + and n 1Eϕ + at time step + 1nt , , , 1 2, 1 2 1 2, 1 21 2, 1 2 1 2, 1 2, 1 2, 1 1 1 21 1 1 , , . j i j i j i j i j ij i j i j i j i n n r r r nn z zz n n E D E D E Dϕ ϕ ϕ ε ε ε + + + ++ + + + + + + ++ + + = = = 11. Carrying-out the correction of an electric field and rE for time step 1nt + according to the Boris scheme zE D δ ∗ = −∇ ΦE E , where ∗ E and E are initial and corrected electric field values, δ Φ is correction to electric field potential, D∇ is a difference analog of the Hamilton operator. For preventing occurrence of electromagnetic field noise with grid period, on each ten-thousand step of evaluations the nine point fields averaging was fulfilled. 3. RESULTS OF NUMERICAL SIMULATION The algorithm described above has been imple- mented as a complex of C ++ programs. The main pa- rameters were chosen close to existing ones in the in- stallation "Almaz-2", namely, the radius of the drift chamber is 4.3 cm, permittivity is equal 2.1, radius of the channel for beam in dielectric is 1.05 cm, length of the chamber is 55.3 cm, electron bunch radius is 0.5 cm, electron energy is 5 MeV, bunch duration is 0.078 ns, pulse repetition period is 0.37 ns. For reduction of cal- culating time and numerical errors the average injected current was chosen 10 A, i.e. 20 times greater than ex- perimental value. Results of simulation showed that during the first 85.5 ns, i.e. when 230 bunches were injected practically linear growth of electric field amplitude up to saturation value of 95 kV/cm is observed (see Fig.4). We assume that the expected number of clots at current of 0.5 A is about 4600. Fig.4. Time dependence of intensity of an electric field on an axis at a right end face of the resonator The electric field spectrum corresponding to Fig.4 is depicted on Fig.5. It’s visible, that the basic maximum on an electric field oscillation spectrum has frequency 2.7 GHz. More high-frequency maximums with ampli- tude approximately 10 times smaller are spread up to frequency 16.2 GHz. Fig.5. The electric field spectrum Linear growth of field amplitude results in square- law change of field energy that it is possible to see on the energy diagram (Fig.6). We shall notice a good per- formance of the energy conservation law in our simula- tion. Fig.6. The energy diagram: W is the electromagnetic field energy, P is the particles energy losses After achieving of maximum the electric field ampli- tude oscillates slowly with frequency of about 11 MHz. Self-consistent influence of excited field on bunches motion dynamics leads to essential spreading of longi- tudinal and transversal velocities of electrons on the phase plane (see Fid. 7, where spreading of longitudinal velocities is depicted). Fig.7. Phase plane for macroelectrons Despite of essential spread of particles on velocities, their relativistic factor remains high. Therefore in con- figuration space the spread of particles is observed only on cross coordinate, while shift of particles in a longitu- dinal direction is absent, that it is possible to view in Fig.8. 201 202 Fig.8. Configuration space for macroelectrons CONCLUSIONS The executed numerical simulation has shown, that nonlinear trapping processes caused by back influence of field of big amplitude on charged bunches, result in restriction of amplitude of an electric field in system. Time of field amplitude growth, and its value are re- ceived. The number of electron bunches which should be injected in the resonator for achievement of a maxi- mum of a field is estimated. This study was partly supported by CRDF Grant # UP2-2569-KH-04. REFERENCES 1. V.I. Kurilko, J. Ullschmied // Nuclear Fusion. 1969. №9, p.129-135. 2. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov // Pisma v JTF. 2003, v.29, №14, p.39- 45 (in Russian). МОДЕЛИРОВАНИЕ НЕЛИНЕЙНОГО РЕЖИМА ВОЗБУЖДЕНИЯ КИЛЬВАТЕРНОГО ПОЛЯ В ЦИЛИНДРИЧЕСКОМ РЕЗОНАТОРЕ С ПОМОЩЬЮ PIC-КОДА П.И. Марков, И.Н. Онищенко, А.Ф. Корж, Г.В. Сотников С помощью специально разработанного нами 2.5-мерного электромагнитного PIC–кода численно промо- делирован нелинейный механизм ограничения амплитуды кильватерного поля, возбуждаемого в цилиндри- ческом резонаторе, частично заполненном диэлектриком, релятивистской последовательностью электрон- ных сгустков. Моделирование показало, что нелинейные захватные процессы, вызванные обратным влияни- ем поля большой амплитуды на заряженные сгустки, приводят к ограничению амплитуды электрического поля в системе. Получено время нарастания амплитуды поля, его амплитуда. Оценено количество электрон- ных сгустков, которые следует инжектировать в резонатор для достижения максимума поля. МОДЕЛЮВАННЯ НЕЛІНІЙНОГО РЕЖИМУ ЗБУДЖЕННЯ КІЛЬВАТЕРНОГО ПОЛЯ В ЦИЛІНДРИЧНОМУ РЕЗОНАТОРІ ЗА ДОПОМОГОЮ PІC-КОДУ П.І. Марков, І.М. Онищенко, О.Ф. Корж, Г.В. Сотніков За допомогою спеціально розробленого нами 2.5-мірного електромагнітного PIC-коду чисельно промо- дельовано нелінійний механізм обмеження амплітуди кільватерного поля, збуджуваного в циліндричному резонаторі, частково заповненому діелектриком, релятивістською послідовністю електронних згустків. Мо- делювання показало, що нелінійні захватні процеси, викликані зворотним впливом поля великої амплітуди на заряджені згустки, приводять до обмеження амплітуди електричного поля в системі. Отримано час нарос- тання амплітуди поля, його амплітуду. Оцінено кількість електронних згустків, які слідує інжектувати у ре- зонатор для досягнення максимуму поля. PIC SIMULATION OF NONLINEAR REGIME WAKE FIELD EXCITATION IN CYLINDRICAL RESONATOR 1. INTRODUCTION 2. A STATEMENT OF PROBLEM 3. THE NUMERICAL ALGORITHM 3. RESULTS OF NUMERICAL SIMULATION CONCLUSIONS МОДЕЛИРОВАНИЕ НЕЛИНЕЙНОГО РЕЖИМА ВОЗБУЖДЕНИЯ КИЛЬВАТЕРНОГО ПОЛЯ В ЦИЛИНДРИЧЕСКОМ РЕЗОНАТОРЕ С ПОМОЩЬЮ PIC-КОДА МОДЕЛЮВАННЯ НЕЛІНІЙНОГО РЕЖИМУ ЗБУДЖЕННЯ КІЛЬВАТЕРНОГО ПОЛЯ В ЦИЛІНДРИЧНОМУ РЕЗОНАТОРІ ЗА ДОПОМОГОЮ PІC-КОДУ