Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence

Combining nuclear microanalytical, mineralogical, crystallochemical and geochemical approaches, the authors analyze a possibility of natural occurrence of enriched or even pure and superpure rare isotopes that can be extracted from ores. Methods of and results from the investigations of these isot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Valter, A.A., Storizhko, V.E., Dikiy, N.P., Dovbnya, A.N., Lyashko, Yu.V., Berlizov, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/81222
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence / A.A. Valter, V.E. Storizhko, N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, A.N. Berlizov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 142-145. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81222
record_format dspace
spelling irk-123456789-812222015-05-14T03:01:52Z Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence Valter, A.A. Storizhko, V.E. Dikiy, N.P. Dovbnya, A.N. Lyashko, Yu.V. Berlizov, A.N. Применение ядерных методов Combining nuclear microanalytical, mineralogical, crystallochemical and geochemical approaches, the authors analyze a possibility of natural occurrence of enriched or even pure and superpure rare isotopes that can be extracted from ores. Methods of and results from the investigations of these isotope anomalies are presented. На основі поєднання ядерно-фізичних, мінералогічних, кристалохімічних і геохімічних підходів проаналізовано можливість накопичення в природі в суттєво збагаченому і навіть в чистому та надчистому стані деяких звичайно рідкісних ізотопів, що можуть бути відокремлені з руд. Розглянуто методи і результати вивчення таких ізотопних аномалій. Путём сочетания ядерно-физических, минералогических, кристаллохимических и геохимических подхо- дов проанализирована возможность накопления в природе в существенно обогащённом или даже в чистом и сверхчистом виде некоторых обычно редких изотопов, которые могут быть выделены из руд. Рассмотрены методы и результаты исследования подобных изотопных аномалий. 2005 Article Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence / A.A. Valter, V.E. Storizhko, N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, A.N. Berlizov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 142-145. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 28.60.+s, 82.80.Jp28. http://dspace.nbuv.gov.ua/handle/123456789/81222 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Valter, A.A.
Storizhko, V.E.
Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Berlizov, A.N.
Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
Вопросы атомной науки и техники
description Combining nuclear microanalytical, mineralogical, crystallochemical and geochemical approaches, the authors analyze a possibility of natural occurrence of enriched or even pure and superpure rare isotopes that can be extracted from ores. Methods of and results from the investigations of these isotope anomalies are presented.
format Article
author Valter, A.A.
Storizhko, V.E.
Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Berlizov, A.N.
author_facet Valter, A.A.
Storizhko, V.E.
Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Berlizov, A.N.
author_sort Valter, A.A.
title Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
title_short Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
title_full Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
title_fullStr Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
title_full_unstemmed Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
title_sort nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Применение ядерных методов
url http://dspace.nbuv.gov.ua/handle/123456789/81222
citation_txt Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence / A.A. Valter, V.E. Storizhko, N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, A.N. Berlizov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 142-145. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT valteraa nuclearanalyticalandmineralogicalprinciplesandtechniquesforpredictionandinvestigationofthenativepurerareisotopeoccurrence
AT storizhkove nuclearanalyticalandmineralogicalprinciplesandtechniquesforpredictionandinvestigationofthenativepurerareisotopeoccurrence
AT dikiynp nuclearanalyticalandmineralogicalprinciplesandtechniquesforpredictionandinvestigationofthenativepurerareisotopeoccurrence
AT dovbnyaan nuclearanalyticalandmineralogicalprinciplesandtechniquesforpredictionandinvestigationofthenativepurerareisotopeoccurrence
AT lyashkoyuv nuclearanalyticalandmineralogicalprinciplesandtechniquesforpredictionandinvestigationofthenativepurerareisotopeoccurrence
AT berlizovan nuclearanalyticalandmineralogicalprinciplesandtechniquesforpredictionandinvestigationofthenativepurerareisotopeoccurrence
first_indexed 2025-07-06T05:40:59Z
last_indexed 2025-07-06T05:40:59Z
_version_ 1836874952682242048
fulltext NUCLEAR-ANALYTICAL AND MINERALOGICAL PRINCIPLES AND TECHNIQUES FOR PREDICTION AND INVESTIGATION OF THE NA- TIVE-PURE RARE ISOTOPE OCCURRENCE A.A. Valter1, V.E. Storizhko1, N.P. Dikiy2, A.N. Dovbnya2, Yu.V. Lyashko2, A.N. Berlizov3 1Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine e-mail: avalter@iop.kiev.ua 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 3Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev, Ukraine Combining nuclear microanalytical, mineralogical, crystallochemical and geochemical approaches, the authors analyze a possibility of natural occurrence of enriched or even pure and superpure rare isotopes that can be extracted from ores. Methods of and results from the investigations of these isotope anomalies are presented. PACS: 28.60.+s, 82.80.Jp28. INTRODUCTION By the middle of the XXth century the importance of the isotope enrichment and pure and superpure isotope production to the further development of civilization has been generally recognized. At present isotope starting materials are employed in atomic industry; from stable isotopes a wide spectrum of tracer atoms are obtained, e.g. to produce various radioactive isotopes for thera- peutic and diagnostic purposes in medicine. Isotope shifts exhibited by different properties of materials can be used for providing security of bank notes, documen- tation, all sorts of information, for controlling laser sys- tems, etc. Pure isotopes have use in nuclear and other fields of research, suggesting that in the XXIst century, most of them if not all stable and long-lived isotopes now numbering 288 [1], will find applications. Isotope separation is an expensive process, so pure isotopes, especially rare ones cost from ten to hundred thousand times more than a corresponding mixture of natural isotopes of similar purity. Thus, a search for and utilization of anomalously enriched natural isotopes might be very promising. The ratio of radioactive isotopes and derived thereof radiogenic isotopes conserved in hard minerals and nat- ural glasses is extensively applied to dating geologic formations. SPECIFYING THE RANGE OF SEARCH FOR NATIVE PURE RARE RADIOGENIC ISOTOPES Pure stable radiogenic isotopes can be formed in the course of natural radioactive transformations in which radiogenic nuclides produce atoms with chemical prop- erties differing from those of atoms whose nuclei under- go the transformations. If the event takes place in miner- als, the newly formed atoms may be "conserved" in the mineral structure. The newly formed atoms may belong to an abundant or trace element present in the crystal or to an element that cannot be detected with most sensi- tive detection techniques. In the latter case to be dis- cussed here, a new element formed in the crystal as a re- sult of a radioactive decay is accumulated as a pure iso- tope. In this situation the crystal structure and geochem- ical history of the mineral formation should be favorable for accumulation of a radioactive element, but unfavor- able for occurrence of an element to which a radiogenic isotope belongs. For example, three-layer packets in the mica struc- ture (Fig. 1) are joined by large univalent cations, K+1. If a mineral-forming medium includes rare alkalis whose atoms also constitute large cations (Rb+1, Cs+1), they can substitute potassium isomorphically. At the same time, in the mica structure there is no position to be occupied by a large divalent ion of strontium whose original con- tent in mica is very low. 87Sr produced via a beta-decay of 87Rb is probably held in the structure due to the defect formation with the local substitution of (OH)- for O2. Radioactive decays favoring the accumulation of rare stable isotopes depend on the concentration of the original radioactive nuclide (Cpa) and the ratio of its half period (T1/2) and the host mineral age (t): Cpr=Cpa·[exp(tn2·t/T1/2)-1], where Cpr is the radiogenic isotope content in the mineral matrix. To identify possible rare isotopes that can be pre- served in pure form in mineral matrices certain bound- ary conditions for their accumulation were considered. MINIMAL RADIOACTIVE ATOM HALF-PE- RIOD REQUIRED FOR RADIOGENIC ISO- TOPE ACCUMULATION Even the age of oldest earth minerals is far smaller than that of their constituent atoms. The Solar System age and the minimum age of its matter is approximately 4.8 billion years. Planets including our Earth are 4.5 bil- lion years old. The first half-billion years of Earth's life have recently been termed the "Hades era" from the old- Greek word "Hades" which in ancient mythology was the name of a place where souls went after death, i.e. hell of a kind. This term reflects a modern idea of the conditions on Earth at that time: heavy meteorite "bombing", with catastrophes of planetary scale following one after an- other and the whole Earth mass to the depth of tens of kilometers from the surface being many times shifted, mixed and melted. 142 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2005, № 6. Series: Nuclear Physics Investigations (45), p. 142-145. Fig. 1. A diagram of radiogenic strontium location in the Rb bearing biotite structure (K,Rb)(Mg,Fe)3[(Al- Si3)O10](OH,F)2 Thus, on early Earth long-lived radioactive nuclei could not be found in more or less long-lived crystals and their decay products could not be accumulated in a hard matrix. The onset of a more quiet period in Earth's history is displayed in the age of the oldest rocks that by modern estimates approaches 3.7…4.0 billion years. Relatively abundant are rocks (3.7…3.4)⋅109 years old. Somewhat younger are the oldest ores, i.e. natural for- mations of contrasting chemical composition enriched by certain chemical and mineral components and thus suitable for extractions. The oldest ores are (3.0…3.4)⋅ 109 years of age. This is precisely the age of the oldest rocks and ores of the Ukrainian Shield [2] that occupies an area of about 200 thousand km2, i.e. one-third of the Ukrainian territory (Fig. 2). Fig. 2. Location of the Ukrainian Shield (shaded) Thus, the age of nuclides, including radioactive one, exceeds the age of the oldest minerals by at least (0.8… 1.1)⋅109 years for rocks and (1.4…1.8)⋅109 years for ores. To specify boundary conditions for the search for ra- diogenic isotopes "conserved" in the ancient mineral structure we assumed the minimum time interval be- tween the production of a nucleus and its fixation in a certain solid (crystalline) phase to be 109 years in a first approximation. The fraction of the initial radioactive atom preserved after the time, t, is determined by the equation C=1/2(t/T) where C is the radioactive atom con- centration in terms of the initial concentration after the time, t, for the half-period, T1/2. So in the exponent we have the number of half-periods within the time elapsed since the nuclide production. In our case it is 109 years. Hence, even with a 100% initial concentration after a billion years the ppm or higher contents would be pre- served only by radioactive nuclei with half-periods longer than 100 million years. Since the initial concentration of radioactive atoms in minerals is invariably much lower than unity (most frequently by as much as a factor of 10) this figure can be taken to be the lower limit of the half-period value in the investigation of possible cases of rare radiogenic isotope accumulation in mineral matrices. PREDICTIONS FOR ACTIVE NATURAL EN- RICHMENT OF RARE ISOTOPES INCLUD- ING POSSIBLE FORMATION OF PURE AND SUPERPURE ISOTOPE We have performed a search for natural nuclides that via a radioactive decay can generate nuclides of new el- ements, which in turn can produce in minerals suffi- ciently high concentrations of radiogenic isotopes to be reliably detected. The lower limit of the half-period is assumed to be equal to 108 years as pointed out above. The typical life time of the oldest minerals was as- sumed to be 3⋅109 years. Analyzing the data and bearing in mind that there may be more than one decay channel, we found 30 preservations in minerals of 28 radiogenic stable iso- topes in concentrations that in cases of favourable min- eral compositions can be determined using modern tech- niques. The examination of the present-day mineralogy data permits us to predict certain abundant mineral for- mations most advantageous for the radiogenic isotopes to accumulate (Table). From these, for 10 nuclides, with considerable iso- tope enrichment, the pure isotope formation is not possi- ble for cristallochemical and geochemical reasons. Thus, due to the presence of invariably two uranium iso- topes in minerals, two radiogenic lead isotopes (206Pb, 207Pb) cannot be present there in the pure form. The accumulation of pure radiogenic isotopes of rare earth produced via a decay of radiogenic nuclides of this group, is impossible because of the chemical proximity and permanent coexistence of elements belonging to this group in the mineral crystals. 8 isotopes can be contained in mineral matrices in the pure form in concentrations above the ppm range, suggesting a possibility of their extraction as monoiso- tope products by means of modern technologies. 6 iso- topes can be present in mineral matrices in the pure form in concentrations ranging from ppm to ppb. 4 iso- topes can be found in concentrations from 10-9 to 10-11. The table highlights occurrences of pure isotopes that are easy to identify with modern analytical tech- niques and amenable to extraction from ores by conven- tional physicochemical and chemical enrichment proce- 143 dures. Presented separately are isotopes that can be ex- tracted from the Ukrainian ores. 144 Predicted radiogenic isotope enrichment of minerals (for ore age of 3 billion years) Origi- nal iso- tope Atom percent abundance Decay type* Half-peri- od, years Newly formed isotope Predicted content in mineral, mass % Possible mineral matrix (Simplified Formula) 40К 0.0117 B (89,28%) 1,27⋅109 40Са 0,0n Halides, Potassium Silicates 40 K 0,0117 EC(10,72%) 1,27⋅109 40Ar 0,0n As above 48Cа 0,187 2В 5⋅1019 48Ti 2⋅10-11 Calcite (CaCO3) and other carbonates 50V 0,25 B (17%) 1,4⋅1017 50Cr 5⋅10-11 Vanadium-oxides, Vanadium-bearing аcmite (Na(Fe,V) Si2O6) 50V 0,25 EC (83%) 1,4⋅1017 50Ti 2,4⋅10-10 As above 50Cr 0,25 2EC 1,8⋅1017 50Ti 3,5⋅10-8 Chromite (Fe Cr2O4) 87Rb 27,835 B 4,88⋅1010 87Sr 0,0n Micas (see text), Pollucite (Cs,Na,Rb)2 Al2Si4O12 96Zr 2,8 2B 3,9⋅1019 96Mo 1,5⋅10-10 Zircon (ZrSiO4) 100Мо 9,63 2B 2⋅1019 100Ru 10-9 Molybdenite (MoS2) 113Cd 12,22 B 9,3⋅1015 113In n⋅10-8 Sphalerite (ZnS) 115In 95,71 B 4,41⋅1014 115Sn 4,5⋅10-6 Rare minerals of In, cassiterite (SnO2) 123Те 0,908 EC >1013 123Sb <8⋅10-5 Tellurides 138La 0,0902 EC (66,4%) 1,05⋅1011 138Ba 7,5⋅10-4 Monazite1, Britholite2 138La 0,0902 В (33,6%) 1,05⋅1011 138Ce 5⋅10-4 As above 142Ce 11,08 2B >5⋅1016 142Nd 10-9 As above 144Nd 23,8 A 2,29⋅1015 140Ce 10-6 As above 147Sm 15 A !,06⋅1011 143Nd 10-3 As above 148Sm 11,3 A 7⋅1015 144Nd 10-6 As aboveе 149Sm 13,8 A >2⋅1015 145Nd 10-6 As above 152Gd 0,2 A 1,08⋅1014 148Sm 10-7 As above 174Hf 0,162 A 2⋅1015 170Yb 10-7 Zircon (ZrSiO4) 176Lu 2,59 B 3,7⋅1010 176Hf 10-3 Monazite1, Britholite2 184W 30,642 A >3⋅1017 180Hf 10-7 Wolframite (Fe,Mn)WO4 186Os 1,58 A 2⋅1015 182W 10-7 Osmiridum (Ir,Os) 187Re 62,6 B 4,12 1010 187Os 10-4 Molybdenite (MoS2) 187Re 62,6(<1⋅10−4%) A 3⋅1010 183W 10-9 As above 190Pt 0,01 А 6,5⋅1011 186Os 10-4 Platinum (Pt) 232Th ∼100 Decay chain 1,40⋅ 1010 208Pb 0,01 Thorianite (ThO2), Monazite1 235 U 0,72 As above 7,04 ⋅ 108 207Pb 1,7⋅10-3 Utaninite (UO2) 238U 99,275 As above 4,47⋅ 109 206Pb 0,037 As above * Type of decay: (A) α-decay, (B) β-decay, (2B) double β-decay, (EC) electron capture, and (2EC) double electron capture. • Bold Roman type: pure rare isotope occurrences easily identifiable with modern analytical techniques; Bold italics: pure isotope occurrences in Ukrainian ores already found and those to be identified. • Normal type: isotope enrichment with possible formation of pure isotopes in concentrations below the detection limit of conventional modern techniques. • Crossed type: active isotope enrichment, but without pure isotope production. 1Monazite (Ce,La, Nd…Lu, Th)PO4,, 2Britholite (Ca, Ce, La, …Lu)5 (SiO4, PO4)3 (OH,F) IDENTIFIED PURE RADIOGENIC ISOTOPES • Ancient rocks and ores are the most suitable objects for investigations of the pure rare isotope produc- tion from initial radioactive isotopes present in suf- ficient concentrations. As mentioned above, a con- venient testing ground for these studies is the Ukrainian Shield where we work with minerals (2 …3)⋅109 years old. Since in most cases, especially in those of practical interest, pure isotopes are pro- duced via a β-decay or electron capture, direct mass-spectrometry techniques are not applicable to the search and identification of pure isotopes pro- duced. Simple, (in this application) fast and nonde- structive analytical methods are activation tech- niques. Mostly the gamma-activation analysis was employed performed with high-current linacs at the KFTI NSC [3-5] and complemented by neutron-ac- tivation techniques with chemically prepared sam- ples and also by using experimental neutron activa- tion methods at the research reactor WWR –M of the INR. This combination permitted the concentra- tions of the radiogenic and one of nonradiogenic isotopes to be determined whereof the radiogenic isotope purity was calculated. In molybdenite from the Ukrainian Shield the un- precedented osmium-187 purity (99.995%) was discov- ered, natural abundance being 1.64%. The distribution of this element in mineral was found to be consistent with the solid solution model. A possible crystallochem- ical mechanism underlying strong radiogenic osmium retention in molibdenite was examined which consists in that the recoil atom occupies a vacant octahedron in the crystal structure (Fig. 3) slightly modifying it to pro- duce a defect. 145 A high degree of purity (above 96%, with natural abundance of 7%) was also determined for radiogenic strontium-87 in rubidium-bearing biotites. It is intended to use minerals of the Ukrainian Shield to identify other naturally-pure isotopes formed in min- eral matrices of foreign composition. Fig. 3. Diagram of the impurity Re and Os atom loca- tion in the molybdenite structure CONCLUSIONS 1) The range of search for native pure rare ra- diogenic isotopes which can be extracted as monoisotope products by means of modern tech- nologies has been specified. 2) The methods for investigation of such iso- topic anomalies were proposed. 3) The existence of pure 187Os and 87Sr isotopes in the Ukrainian ores was found. ACKNOWLEDGEMENTS The authors wish to thank Dr. M.F. Vlasov for use- ful discussions, Dr. S. Yudina for translation of the manuscript into English and A.I. Pisansky for prepara- tion of the figures. This work was done under the financial support of the Fundamental Research Foundation of Ukraine (Project № 02.07/199). REFERENCES 1. J.R. Parrington, H.D. Knox, S.L. Breneman et al. Nuclides and Isotopes. Lockheed Martion Cor- poration. 2002, 89 p. 2. N.P. Tserbak, E.V. Bibikova, V.M. Skobelev, D.N. Tserbak. Evolution in time and metallogenic specialisation Early Cambrian period the Ukrainian shield crust (3,7-1,7⋅109 years) // Mineralogical Journal. 2003, v. 25, №4, p. 87-92 (in Russian). 3. N.P. Dikiy, A.N. Dovbnya, А.А. Valter et al. Gamma activation analysis of noble metals in ores // Mineralogical Journal. 1995, v. 17, №6, p. 85-89 (in Russian). 4. N.P. Dikiy, A.N. Dovbnya, V.I. Borovlev et al. Gamma activation analysis 187Os in molybdenite // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations. 1999, №1(33), p. 64-66. 5. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko еt al. Nuclear Physics Techniques for Determination of Rocks Age // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations. 2004, № 5(44), p. 85-88. ЯДЕРНО-ФИЗИЧЕСКИЕ И МИНЕРАЛОГИЧЕСКИЕ ПРИНЦИПЫ И МЕТОДЫ ПРОГНОЗИРОВА- НИЯ И ИССЛЕДОВАНИЯ СЛУЧАЕВ СУЩЕСТВОВАНИЯ РЕДКИХ ИЗОТОПОВ В ПРИРОДНО- ЧИСТОМ СОСТОЯНИИ А.А. Вальтер, В.Е. Сторижко, Н.П. Дикий, А.Н. Довбня, Ю.В. Ляшко, А.Н. Берлизов Путём сочетания ядерно-физических, минералогических, кристаллохимических и геохимических подхо- дов проанализирована возможность накопления в природе в существенно обогащённом или даже в чистом и сверхчистом виде некоторых обычно редких изотопов, которые могут быть выделены из руд. Рассмотрены методы и результаты исследования подобных изотопных аномалий. ЯДЕРНО-ФІЗИЧНІ І МІНЕРАЛОГІЧНІ ПРИНЦИПИ І МЕТОДИ ПРОГНОЗУВАННЯ І ВИВЧЕННЯ ВИПАДКІВ ІСНУВАННЯ РІДКІСНИХ ІЗОТОПІВ У ПРИРОДНО-ЧИСТОМУ СТАНІ А.А. Вальтер, В.Ю. Сторіжко, М.П. Дикий, А.М. Довбня, Ю.В. Ляшко, А.М. Берлізов На основі поєднання ядерно-фізичних, мінералогічних, кристалохімічних і геохімічних підходів проаналізовано можливість накопичення в природі в суттєво збагаченому і навіть в чистому та надчистому стані деяких звичайно рідкісних ізотопів, що можуть бути відокремлені з руд. Розглянуто методи і результати вивчення таких ізотопних аномалій. 146 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine INTRODUCTION