Spherical detector device mathematical modeling with taking into account detector module symmetry

Mathematical model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurements procedure with multiple radiation sources developed. Modelling results are shown to have perfect agreement with calibration measurements

Saved in:
Bibliographic Details
Date:2005
Main Authors: Batiy, V.G., Fedorchenko, D.V., Prokhorets, I.M., Prokhorets, S.I., Khazhmuradov, M.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/81230
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Spherical detector device mathematical modeling with taking into account detector module symmetry / V.G. Batiy, D.V. Fedorchenko, I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 63-65. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81230
record_format dspace
spelling irk-123456789-812302015-05-14T03:02:37Z Spherical detector device mathematical modeling with taking into account detector module symmetry Batiy, V.G. Fedorchenko, D.V. Prokhorets, I.M. Prokhorets, S.I. Khazhmuradov, M.A. Экспериментальные методы и обработка даных Mathematical model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurements procedure with multiple radiation sources developed. Modelling results are shown to have perfect agreement with calibration measurements Розглянуто математичне моделювання шарового детектора з урахуванням властивостей симетрії. Представлено послідовний алгоритм моделювання процедури вимірювань за наявності декількох джерел випромінювання. Показано, що результати моделювання добре узгоджуються з калібрувальними вимірюваннями. Рассмотрено математическое моделирование шарового детектора с учетом свойств симметрии. Представлен последовательный алгоритм моделирования процедуры измерения при наличии нескольких источников излучения. Показано, что результаты моделирования имеют хорошее согласие с калибровочными измерениями. 2005 Article Spherical detector device mathematical modeling with taking into account detector module symmetry / V.G. Batiy, D.V. Fedorchenko, I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 63-65. — англ. 1562-6016 PACS: 28.41Te http://dspace.nbuv.gov.ua/handle/123456789/81230 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Экспериментальные методы и обработка даных
Экспериментальные методы и обработка даных
spellingShingle Экспериментальные методы и обработка даных
Экспериментальные методы и обработка даных
Batiy, V.G.
Fedorchenko, D.V.
Prokhorets, I.M.
Prokhorets, S.I.
Khazhmuradov, M.A.
Spherical detector device mathematical modeling with taking into account detector module symmetry
Вопросы атомной науки и техники
description Mathematical model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurements procedure with multiple radiation sources developed. Modelling results are shown to have perfect agreement with calibration measurements
format Article
author Batiy, V.G.
Fedorchenko, D.V.
Prokhorets, I.M.
Prokhorets, S.I.
Khazhmuradov, M.A.
author_facet Batiy, V.G.
Fedorchenko, D.V.
Prokhorets, I.M.
Prokhorets, S.I.
Khazhmuradov, M.A.
author_sort Batiy, V.G.
title Spherical detector device mathematical modeling with taking into account detector module symmetry
title_short Spherical detector device mathematical modeling with taking into account detector module symmetry
title_full Spherical detector device mathematical modeling with taking into account detector module symmetry
title_fullStr Spherical detector device mathematical modeling with taking into account detector module symmetry
title_full_unstemmed Spherical detector device mathematical modeling with taking into account detector module symmetry
title_sort spherical detector device mathematical modeling with taking into account detector module symmetry
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Экспериментальные методы и обработка даных
url http://dspace.nbuv.gov.ua/handle/123456789/81230
citation_txt Spherical detector device mathematical modeling with taking into account detector module symmetry / V.G. Batiy, D.V. Fedorchenko, I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 63-65. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT batiyvg sphericaldetectordevicemathematicalmodelingwithtakingintoaccountdetectormodulesymmetry
AT fedorchenkodv sphericaldetectordevicemathematicalmodelingwithtakingintoaccountdetectormodulesymmetry
AT prokhoretsim sphericaldetectordevicemathematicalmodelingwithtakingintoaccountdetectormodulesymmetry
AT prokhoretssi sphericaldetectordevicemathematicalmodelingwithtakingintoaccountdetectormodulesymmetry
AT khazhmuradovma sphericaldetectordevicemathematicalmodelingwithtakingintoaccountdetectormodulesymmetry
first_indexed 2025-07-06T05:42:00Z
last_indexed 2025-07-06T05:42:00Z
_version_ 1836875016633843712
fulltext SPHERICAL DETECTOR DEVICE MATHEMATICAL MODELING WITH TAKING INTO ACCOUNT DETECTOR MODULE SYMMETRY V.G. Batiy1, D.V. Fedorchenko1, I.M. Prokhorets2, S.I. Prokhorets2, M.A. Khazhmuradov2 1Institute for Safety Problems of Nuclear Power Plants, Chernobyl, Ukraine e-mail: oitp@mntc.org.ua 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail: khazhm@kipt.kharkov.ua, iprokhorets@kipt.kharkov.ua Mathematical model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurements procedure with multiple radiation sources developed. Modelling results are shown to have perfect agreement with calibration measurements. PACS: 28.41Te 1. INTRODUCTION Spherical detector (SD) device created in ISP NPP was successfully used for gamma radiation angular distribution studies for the “Shelter” object (SO) and can be used for the similar purposes on other nuclear power facilities. In our paper we consider mathematical modelling of the gamma radiation angular distribution measurement procedure for multiple radiation sources with different intensities, which are placed at the different distances. 2. MATHEMATICAL MODEL The proposed method is based on the so-called response function describing SD device detectors values for point source with fixed position. In fact, they constitute vector-function for the source angular coordinates )(),( det 32 det 1 H ,,Hii ≡ϕθ= iFiF . (1) Calculation of the response functions provides the way for attenuation coefficients corrention and calibration results verification. Mathematical model of the SD device required for calculations with GEANT-3 software was developed at NSC KIPT and numeric computations were performed. Response functions obtained by the mathematical modeling can be used for the more precise method of point source angular coordinates measurements and for angular distribution procedure simulation in the case of multiple radiation sources. Significant accuracy improvement requires a considerably large set of response functions for various radiation source positions. Direct calculations for total spatial angle are crucial enough due to large amount of numerical calculations. We can essentially reduce number of calculations taking into account the symmetry of detection module. Detection module construction implies detector collimating holes placement the icosahedron’s vertices (12 holes) and dodecahedron’s vertices (20 holes) with entire symmetry corresponding to icosahedron’s spatial symmetry group. It follows that applying symmetry transformations to response function for one source position we obtain response function for another source location corresponding to the first location’s symmetry transformation FF R~=′ , (2) where R~ is as symmetry transformation. Applying symmetry transformation to the detector coordinates we can find the rule for detector’s positions interchange during detector module rotations. So we can limit the set of response functions to those belong to the single icosahedron’s face while the others could be obtained using the symmetry transformations (2) from this only set. During our calculations this base face was 1-7-11 (the numbers denote vertices defining the vertex according to Table 1). In the center of this face collimating hole 2 is located. Table 1. Collimation holes angular coordinates № θ, deg. ϕ, deg. № θ, deg. ϕ, deg. 1 0 0 17 100.8 36 2 37.4 0 18 100.8 108 3 37.4 72 19 100.8 180 4 37.4 144 20 100.8 252 5 37.4 216 21 100.8 324 6 37.4 288 22 116.6 0 7 63.4 36 23 116.6 72 8 63.4 108 24 116.6 144 9 63.4 180 25 116.6 216 10 63.4 252 26 116.6 288 11 63.4 324 27 142.6 36 12 79.2 0 28 142.6 108 13 79.2 72 29 142.6 180 14 79.2 144 30 142.6 252 15 79.2 216 31 142.6 324 16 79.2 288 32 180 0 Symmetry transformation R corresponds to some spatial rotation of the detector module. Such rotation [3] is defined by three independent parameters. In our case it is efficient to use 3×3 nonsingular matrix that is coordinate system rotation matrix. For the response functions calculations we need to develop an algorithm to generate rotation matrix that PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2005, № 6. Series: Nuclear Physics Investigations (45), p. 63-65. 63 mailto:khazhm@kipt.kharkov.ua transforms icosahedron’s face 1-7-11 to any other face preserving face’s orientation. We shall show this is possible when both center and one of the vertices of the new face are known. Table 2 contains numbers for centers of planes together with corresponding vertices numbers. Table 2. Plane centers and corresponding vertices numbers Plane № Center number Vertex number 1 2 1, 7, 11 2 3 1, 7, 8 3 4 1, 8, 9 4 5 1, 9, 10 5 6 1, 11, 10 6 12 7, 11, 22 7 13 8, 7, 23 8 14 9, 8, 24 9 15 10, 9, 25 10 16 11, 10, 26 11 17 7, 23, 22 12 18 8, 24, 23 13 19 9, 25, 24 14 20 10, 26, 25 15 21 11, 22, 26 16 27 22, 26, 32 17 28 23, 22, 32 18 29 24, 23, 32 19 30 25, 24, 32 20 31 26, 25, 32 Firstly, let us fix the initial coordinate system. Initial coordinate system has the center in the icosahedron’s geometrical center with Z-axis directed to hole 1 (see Table 1) and hole 2 belongs to XZ coordinate plane. Let zn and 0n denote vector from the detector block’s geometrical center to the vertex and to the center of new plane correspondently. From these we can generate three coordinate orts xe ′ , ye ′ and ze ′ for the rotated coordinate system . , , 0 0 zyx z z y z z z eee ne nee n ne        ×=′ × ×=′ =′ (2) Thus we define the new coordinate system that has Z-axis coinciding with zn and 0n vector belongs to XZ plane. Rotation matrix R in this case could be constructed from xe ′ , ye ′ and ze ′ orts           ′′′ ′′′ ′′′ = 333 222 111 zyx zyx zyx eee eee eee R . (3) Matrix R constructed this way defines transformation from the initial coordinate system to new coordinate system with vector transformation rule , 3 1 ∑ = =′ k kiki rRr (4) where kr and ir ′ are components of the arbitrary vector in initial and rotated coordinate systems. According to the definition response function gives detector counts for the point source for the known position relative to detector module. This point source could be thought as a model source. From the above it follows that response function symmetry transformations provide us with response functions for other source’s positions being in turn the result of those symmetry transformations. This fact could be used for simulation of measurement procedure with multiple radiation sources. In the case of multiple sources we need a set of precalculated response functions for the 1-7-11 plane. Using symmetry transformations we can find correspondence between the simulated source and one of the response functions and the inverse transformation gives us detector counts for the source. Total radiation rate from multiple sources is additive so we can obtain it by adding detector counts for each point source. We can use weighted detectors counts to simulate sources with varying intensity. The exact algorithm is presented below. The following algorithm is applied for each source. Starting parameters are source angular coordinates and its relative intensity. Also we need to switch from angular to Cartesian coordinates for detectors and sources. Here we assume the corresponding points in the Cartesian coordinate system to lie on the unit sphere. Hence we can introduce unit vector s pointing to source and a set of unit vectors { }miSS i   1, == , pointing to the locations that response functions were calculated. 1. Among the detectors located in plane centers (see Table 2) find the one closest to the given source. The closeness criterion is distance minimum between source and plane center. Cartesian coordinates of the selected vertex give us vector zn  . 2. From the Table 2 choose vertex detectors for the plane selected on the previous step and find the closest to source. Cartesian coordinates of the selected vertex give us vector 0n  . 3. Using (3) and (4) construct xe ′ , ye ′ and ze ′ orts and transformation matrix R. 4. Apply transformation R to vector s according to (4) to obtain rotated vector s′ , which belongs to 1-7-11 plane. 5. Using minimum distance criterion select from the set S the closest vector .s′′ This one will be prototype for the source. 6. Using the inverse transformation 1−R on vector s ′′ get the model source coordinates and the corresponding detectors counts. 7. Multiply model detectors counts obtained on the previous step by the model source relative intensity and add to the resulting data. 64 The result of this algorithm applied to all sources it total response function for the set of point sources with known positions and relative intensities. For the actual calculations this algorithm was implemented using C++ language. Fig. 1. The result of modeling for two sources Fig. 2. The result of calibration measurements for two sources 3. RESULTS AND CONCLUSIONS For testing purposes we have performed calculations for the same sources positions as those used for calibration measurements (see Figs. 1,2). Perfect agreement was achieved proving the correctness of developed modeling method. Thus one can apply it for more accurate SD device calibration procedure, detector module angular resolution survey and for SD device certification procedure. REFERENCE 65 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ШАРОВОГО ДЕТЕКТОРА С УЧЕТОМ СИММЕТРИИ ДЕТЕКТОРНОГО БЛОКА В.Г. Батий, Д.В. Федорченко, И.М. Прохорец, С.И. Прохорец, М.А. Хажмурадов Рассмотрено математическое моделирование шарового детектора с учетом свойств симметрии. Представлен последовательный алгоритм моделирования процедуры измерения при наличии нескольких источников излучения. Показано, что результаты моделирования имеют хорошее согласие с калибровочными измерениями. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ШАРОВОГО ДЕТЕКТОРА З УРАХУВАННЯМ СИМЕТРІЇ ДЕТЕКТОРНОГО БЛОКУ В.Г. Батій, Д.В. Федорченко, І.М. Прохорець, С.І. Прохорець, М.А. Хажмурадов Розглянуто математичне моделювання шарового детектора з урахуванням властивостей симетрії. Представлено послідовний алгоритм моделювання процедури вимірювань за наявності декількох джерел випромінювання. Показано, що результати моделювання добре узгоджуються з калібрувальними вимірюваннями. 66