Technique for fissile materials detection using electron linac

The possibilities of technique for fissile materials detection using the pulse γ-quantum fluxes generated by electron linac are studied. The technique is based on detection of neutrons escaping from fissile materials after gamma irradiation (technique of delayed neutrons). The diffusion approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Barrata, A., Dovbnja, A.N., Eran, L.V., Karasev, S.P., Kiryukhin, N.M., Mel’nik, Yu.P., Ranyuk, Yu.N., Trubnikov, S.V., Shljakhov, I.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/81233
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Technique for fissile materials detection using electron linac / A. Barrata, A.N. Dovbnja, L.V. Eran, S.P. Karasev, N.M. Kiryukhin, Yu.P. Mel’nik, Yu.N. Ranyuk, S.V. Trubnikov, I.N. Shljakhov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 75-80. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81233
record_format dspace
spelling irk-123456789-812332015-05-14T03:02:41Z Technique for fissile materials detection using electron linac Barrata, A. Dovbnja, A.N. Eran, L.V. Karasev, S.P. Kiryukhin, N.M. Mel’nik, Yu.P. Ranyuk, Yu.N. Trubnikov, S.V. Shljakhov, I.N. Экспериментальные методы и обработка даных The possibilities of technique for fissile materials detection using the pulse γ-quantum fluxes generated by electron linac are studied. The technique is based on detection of neutrons escaping from fissile materials after gamma irradiation (technique of delayed neutrons). The diffusion approach is developed for description of spacetime evolution of neutron fluxes inside the prototype system, which is irradiated by external γ-source. The simulation of electromagnetic interaction with matter is performed using the program package GEANT. The feasibility of this technique is proved for the case of plane one-dimensional model for a three-zone homogeneous subcritical assembly consisting of ²³⁵U and ⁵⁶Fe. Досліджуються можливості методу виявлення матеріалів, які поділяються, з використанням імпульсних потоків γ-квантів, що генерує лінійний прискорювач електронів. Метод засновано на реєстрації нейтронів, випромінюваних матеріалом, що поділяється, після γ-опромінення (метод запізнілих нейтронів). Розвинуто дифузійний підхід для опису просторово-часової еволюції потоку нейтронів у досліджуваному об'єкті, що опромінюється зовнішнім джерелом γ-квантів. Моделювання процесів електромагнітної взаємодії з речовиною проводиться за допомогою пакету програм GEANT. Можливість запровадження цього методу підтверджено результатами розрахунків, проведених у випадку плоскої одновимірної моделі для гомогенної трьохзонної підкритичної збірки, у якій шар з ²³⁵U оточений двома шарами з ⁵⁶Fe. Исследуются возможности метода обнаружения делящихся материалов с использованием импульсных потоков γ-квантов, генерируемых линейным ускорителем электронов. Метод основан на регистрации нейтронов, испускаемых делящимся материалом поcле γ-облучения (метод запаздывающих нейтронов). Развит диффузионный подход для описания пространственно-временной эволюции потока нейтронов в исследуемом объекте, который облучается внешним источником γ-квантов. Моделирование процессов электромагнитного взаимодействия с веществом проводится с помощью пакета программ GEANT. Осуществимость этого метода подтверждена результатами расчетов, проведенных в случае плоской одномерной модели для гомогенной трехзонной подкритической сборки, в которой слой ²³⁵U окружен двумя слоями ⁵⁶Fe. 2005 Article Technique for fissile materials detection using electron linac / A. Barrata, A.N. Dovbnja, L.V. Eran, S.P. Karasev, N.M. Kiryukhin, Yu.P. Mel’nik, Yu.N. Ranyuk, S.V. Trubnikov, I.N. Shljakhov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 75-80. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 61.20.ja http://dspace.nbuv.gov.ua/handle/123456789/81233 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Экспериментальные методы и обработка даных
Экспериментальные методы и обработка даных
spellingShingle Экспериментальные методы и обработка даных
Экспериментальные методы и обработка даных
Barrata, A.
Dovbnja, A.N.
Eran, L.V.
Karasev, S.P.
Kiryukhin, N.M.
Mel’nik, Yu.P.
Ranyuk, Yu.N.
Trubnikov, S.V.
Shljakhov, I.N.
Technique for fissile materials detection using electron linac
Вопросы атомной науки и техники
description The possibilities of technique for fissile materials detection using the pulse γ-quantum fluxes generated by electron linac are studied. The technique is based on detection of neutrons escaping from fissile materials after gamma irradiation (technique of delayed neutrons). The diffusion approach is developed for description of spacetime evolution of neutron fluxes inside the prototype system, which is irradiated by external γ-source. The simulation of electromagnetic interaction with matter is performed using the program package GEANT. The feasibility of this technique is proved for the case of plane one-dimensional model for a three-zone homogeneous subcritical assembly consisting of ²³⁵U and ⁵⁶Fe.
format Article
author Barrata, A.
Dovbnja, A.N.
Eran, L.V.
Karasev, S.P.
Kiryukhin, N.M.
Mel’nik, Yu.P.
Ranyuk, Yu.N.
Trubnikov, S.V.
Shljakhov, I.N.
author_facet Barrata, A.
Dovbnja, A.N.
Eran, L.V.
Karasev, S.P.
Kiryukhin, N.M.
Mel’nik, Yu.P.
Ranyuk, Yu.N.
Trubnikov, S.V.
Shljakhov, I.N.
author_sort Barrata, A.
title Technique for fissile materials detection using electron linac
title_short Technique for fissile materials detection using electron linac
title_full Technique for fissile materials detection using electron linac
title_fullStr Technique for fissile materials detection using electron linac
title_full_unstemmed Technique for fissile materials detection using electron linac
title_sort technique for fissile materials detection using electron linac
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Экспериментальные методы и обработка даных
url http://dspace.nbuv.gov.ua/handle/123456789/81233
citation_txt Technique for fissile materials detection using electron linac / A. Barrata, A.N. Dovbnja, L.V. Eran, S.P. Karasev, N.M. Kiryukhin, Yu.P. Mel’nik, Yu.N. Ranyuk, S.V. Trubnikov, I.N. Shljakhov // Вопросы атомной науки и техники. — 2005. — № 6. — С. 75-80. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT barrataa techniqueforfissilematerialsdetectionusingelectronlinac
AT dovbnjaan techniqueforfissilematerialsdetectionusingelectronlinac
AT eranlv techniqueforfissilematerialsdetectionusingelectronlinac
AT karasevsp techniqueforfissilematerialsdetectionusingelectronlinac
AT kiryukhinnm techniqueforfissilematerialsdetectionusingelectronlinac
AT melnikyup techniqueforfissilematerialsdetectionusingelectronlinac
AT ranyukyun techniqueforfissilematerialsdetectionusingelectronlinac
AT trubnikovsv techniqueforfissilematerialsdetectionusingelectronlinac
AT shljakhovin techniqueforfissilematerialsdetectionusingelectronlinac
first_indexed 2025-07-06T05:42:24Z
last_indexed 2025-07-06T05:42:24Z
_version_ 1836875042021965824
fulltext TECHNIQUE FOR FISSILE MATERIALS DETECTION USING ELECTRON LINAC A. Barrata1, A.N. Dovbnja2, L.V. Eran2, S.P. Karasev2, N.M. Kiryukhin3, Yu.P. Mel’nik2, Yu.N. Ranyuk2, S.V. Trubnikov4, I.N. Shljakhov2 1Penn State University, Pennsylvania, USA 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail: karasev@kipt.kharkov.ua 3Academy of Technology Sciences, Kharkov, Ukraine 4Kharkov National University, Kharkov, Ukraine The possibilities of technique for fissile materials detection using the pulse γ-quantum fluxes generated by electron linac are studied. The technique is based on detection of neutrons escaping from fissile materials after gamma irradiation (technique of delayed neutrons). The diffusion approach is developed for description of space- time evolution of neutron fluxes inside the prototype system, which is irradiated by external γ-source. The simulation of electromagnetic interaction with matter is performed using the program package GEANT. The feasibility of this technique is proved for the case of plane one-dimensional model for a three-zone homogeneous subcritical assembly consisting of 235U and 56Fe. PACS: 61.20.ja 1. INTRODUCTION The problem of detecting fissile materials (FM) is recently question of the hour in the context of the risk of nuclear proliferation and the danger of executing acts of terrorism. The perspective methods of FM detection are the so-called active ones. Neutrons often use in these methods, since they have a capacity for traversing the materials without an essential attenuation of the initial flux (see, e.g., [1]). The active techniques of FM diag- nostics can be based on detection of neutrons escaping from FM that undergo fisssion, which can be initiated by neutron bombardment or gamma irradiation (technique of delayed neutrons). So, the beam of gammas is offered to use in [2] for detection of transuranium scraps. The neutron or gamma fluxes of required intensity can be produced using linear accelerators. It should be stated that the neutrons, which are produced by the corresponding (e,n) converter, have an angular distribution close to spherically symmetric. Therefore, the considerable part of neutron flux will be spent ineffectively, and it is necessary to increase an electron current for producing a required neutron flux. It will gain in an irradiative loading examined sample. In contrast to neutrons a γ-quantum flux produced by the (e,γ) converter (at energy of an initial electron beam more than 20 MeV) is mainly propagated in the direction of initial electron beam with a small angular divergence. It essentially facilitates a problem of localizing a γ-quantum flux on an examined region. FM, that are prepared for illegal transport, can be disposed in special assemblies. These assemblies can have multi-layer structure, in which the FM layers alternate with the layers from other materials. It is reasonable to assume also, that the assemblies should be subcritical ones, in order to eliminate a possibility of initiating an uncontrolled chain nuclear reaction. The simplest model of subcritical assembly is the one-dimensional model of plane infinite layers. This model corresponds to the situation when neutron leakage from assembly is absent in the transverse direction. We shall also assume, that a material composition of assembly does not include the hydric materials. It allows considering only fast neutron- induced nuclear processes, which occur in the assembly. The purpose of the present work is to investigate a feasibility of detecting FM with the help of the technique of delayed neutrons, which is based on using the bremsstrahlung flux produced by electron linac. The diffusion approach, which has been developed in [3], is used for describing the space-time evolution of neutron fluxes inside the subcritical assembly irradiated by external γ- source. The simulation of electromagnetic interaction with the corresponding materials is performed using the programme package GEANT. The calculations are carried out for the case of a three-zone homogeneous subcritical assembly, in which two 56Fe layers surround 235U layer. 2. THE CALCULATION FORMALISM In the one-group approximation the non-stationary one-dimensional diffusion equation for the scalar neutron flux Φ can be written in the form PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2005, № 6. Series: Nuclear Physics Investigations (45), p. 75-80. 75 1 ( ) (1 )( )a f fD v t x x β ν∂ Φ ∂ ∂ Φ− Φ − − Σ Φ ∂ ∂ ∂ + Σ i i l ll i C Qλ= +∑ ∑ , (1) ( ) /l f f l f fl β β ν ν= Σ Σ∑ , (2) where Φ(x,t) is the scalar neutron flux, Σα(x)=Σjσα jNj(x) is the macroscopic cross section of the neutron reaction of the α-type, (the index α corresponds to the reactions of neutron absorption (a) and fission (f)), Nj(x) is the concentration of j’th nuclide at the point x; σα j is the corresponding effective one-group microscopic cross section of the j’th nuclide; νfΣf=Σjνf jσf jNj(x), νf j is the mean number of neutrons produced at the single nuclear fission event for the j’th fissile nuclide; β is the effective fraction of delayed neutrons, βj=Σiβj i, here βj i, Cj i and λj i are the portion of delayed neutrons, the concentration and decay constant of the precursor nuclei in the i’th group of the j’th fissile nuclide, correspondingly; D(x)=1/(3Σtr(x)) is the diffusion coefficient, Σtr(x)) is the macroscopic transport cross- section, v is the one-group neutron velocity. To create a neutron flux in the system under consideration we assume that the left boundary of the system is subjected to an external photon flux Φγ coming from a γ-source. The corresponding rate of neutron generation in each space point of the assembly due to the (γ,n) and (γ,f) reactions with nuclei involved in the assembly composition is defined by the relation max max ( , ) ( , ) ( , ) ( , ) ( , )( ) th th n f E E n f f E E Q x dE dE γ γ γ γ γ γ γ γ γ γ γν= Σ Φ + Σ Φ∫ ∫ , (3) ( , ) ( , )( , ) ( ) ( )j j n nj x E E N xγ γ γ γσΣ = ∑ ( , ) ( , )( ) ( , )Σf fE x Eγ γ γ γν ( , ) ( , )( ) ( ) ( ),= ∑ j j j f fj E E N xγ γ γ γν σ where Σ(γ,n)(x,Eγ) (Σ(γ,f)(x,Eγ)) is the macroscopic cross section for the (γ,n) (photo fission (γ,f)) reaction, σj (γ,n)(E γ) (σj (γ,f)(Eγ)) is the total microscopic cross section for the (γ,n) ((γ,f)) reaction with the j’th nuclide, νj (γ,f)(Eγ) is the mean number of neutrons which are produced at the single photo fission event for the j’th fissile nuclide; Φγ (Eγ) is the photon flux with energy Eγ, E th (γ,n) (E th (γ,f)) is threshold energy for the corresponding (γ,n) ((γ,f)) reaction, Eγ max is the upper limit of the gamma-radiation energy. We consider a finite one-dimensional space region 0 ≤x≤ L with a certain distribution of FM and other materials, which simulates the subcritical assembly. The boundary conditions of the third kind for the flux Φ(x,t), which correspond to the free assembly boundaries, are used 0 ( , )(0, ) 2 (0, ) 0 x x tt D t x = ∂ ΦΦ − = ∂ , (4) ( , )( , ) 2 ( , ) 0 = ∂ ΦΦ + = ∂ x L x tL t D L t x . (5) Since the assembly under consideration is a multi- layer one the continuity conditions for the neutron scalar flux and neutron current must be satisfied at the bounda- ry of media with the different physical properties: / //( , ) ( , )x t x tΦ = Φ , (6) // / / //( , ) ( , )( , ) ( , )x t x tD x t D x t x x ∂ Φ ∂ Φ= ∂ ∂ , (7) where the primes mark the quantities belonging to diffe- rent media. These conditions are valid for any moment of time within the time interval 0 ≤ t ≤ T considered. The initial condition for the neutron flux Φ(x,t) at the moment t = 0 for all values x from the space interval 0 ≤ x≤ L is chosen as ( , 0) 0x tΦ = = . (8) The burn-up of FM will be neglected, since we con- fine ourselves to consideration of the assembly opera- tion during small time The equations of nuclear kinetics for 6 groups of the precursor nuclei of delayed neutrons take the form ( )∂ = − + Σ Φ ∂ i i i il l l l f f l C C t λ β ν (9) with the initial conditions 0( , 0) ( )= =i i l lC x t C x . (10) In the case under consideration the flux Φ weakly varies during the characteristic decay time of the precur- sor nuclei that emit delayed neutrons. Therefore, number of the kinetic equations (9) can be reduced, using the approach of one equivalent group of the precursor nuclei ( )∂ = − + Σ Φ ∂ l l l l f f l C C t λ β ν , (11) 0( , 0) ( )= =l lC x t C x , (12) where / /= ∑ i i l l l li λ β β λ . The complete statement of the problem considered includes the set of partial differential equations (1), (11) and corresponding initial and boundary conditions to them as well. For solving this nonstationary problem we have used the finite-difference method. To apply the finite-difference technique a rectangular mesh with steps h and τ (uniform for x and variable for t) in the range of variables x and t is introduced. We shall find the solutions of the set of the algebraic equations obtained from Eq. (1) in this way using the implicit Crank- Nickolson difference scheme [4] (for details, see [3]). The solutions of Eq. (11) can be simplified by assuming that the neutron flux Φ is constant during the time intervals τ. This assumption can easily be satisfied by choosing sufficiently small time intervals τ, on which the flux value should be taken as Φ=(Φn+Φn+1)/2 (where Φn is the neutron flux value for the n-th time layer). Then the expressions for the concentrations of precursor nuclei for the new (n+1)-th layer at every node of the space mesh can be obtained using the analytical approach described in Ref. [3] ( )1 ( ) 1l ln n l l l f f l l C Ce eλ τ λ τβ ν λ −+   = + Σ Φ −    . (13) The initial condition is chosen as Cl 0 = 0. 76 Thus, the set of partial differential equations (1) and (11) is reduced using the Crank-Nickolson difference scheme to the set of algebraic equations, in which dependence of the concentrations of precursor nuclei on the sought-for neutron flux Φ is defined by Eqs. (13). The numerical solutions of this set of equations have been calculated using the method like in [3]. For calculations of the effective one-group microscopic cross sections we used the group neutron fluxes Φg (g is the number of neutron energy group) for the initial assembly calculated from solving the stationary multigroup problem. Calculations were performed in the 26-group approximation using the library of group neutron constants from Ref. [5]. The procedure for calculating the one-group effective cross sections is defined by the relations (see [3]) 26 1 ( ) ( ) gl g l g S K K α α σ σ = Φ = Φ∑ , (14) 26 1 ( ) ( )g S g K K = Φ = Φ∑ , where ΦS(K) is the neutron flux summed over 26 groups, the index α corresponds to the reactions of neutron capture, fission and scattering, the index K numerates the node of the space calculation mesh. The one-group neutron velocity is given by 26 1 1 1 ( ) ( ) g g gS K v K v= Φ= Φ ∑ , (15) where vg is the neutron velocity for the group g. The transport cross section σtr is averaged according to the following expression 26 26 1 1 ( ) / ( )l gl g g g g tr tr g g D K D Kσ σ = = = Φ Φ∑ ∑ , (16) where Dg is the diffusion coefficient for the group g. 3. RESULTS OF CALCULATIONS To solve the main problem of the present work it is necessary to simulate intense neutron field inside the subcritical assembly by the external γ-source. The description of corresponding evolutionary problem is based on the diffusion approach described above. We consider a three-zone (layer) homogeneous subcritical assembly that consists of the high-enriched (100%) metal 235U fuel of porosity p = 0.8 and the constructional material 56Fe (see Fig. 1). X, cm 0 XL L XR Zone 1 Zone 2 Zone 3 Φ γ 56Fe 56Fe 235U 100 % Fig. 1. The subcritical assembly The calculations start from distributing 235U and 56Fe nuclei on the corresponding zones. The first (third) zone (near the left (right) edge of the assembly) with the width 25 cm of every one is filled only with 56Fe. The second zone represents the thin layer of 235U. The subcritical assembly width, 0 x LЈ Ј , is divided into M = 200 intervals of the spatial calculation mesh. We impose the boundary conditions (4)-(7) on the scalar neutron flux Φ(x,t). To create the intense neutron flux in the system we assume that the left boundary of the assembly is subjected to an external photon flux Φγ(Eγ) coming from a γ-source. The photon flux simulates inside the assembly the neutron flux that is defined by the density of neutron generation rate Q(x) (3). 0 40 80 1E-5 1E-4 1E-3 1E-2 1E-1 N/N0 Egam. (MeV) Fig. 2. Relative dependence of γ - quantum in energy Eγ calculated for the electron energies 25 MeV (dashed curve) and 100 MeV (solid curve) The parameters of the subcritical assembly under consideration were determined by the numerical solution of the multigroup criticality problem. So, the value of effective multiplication factor of neutrons in this system keff = 0.93 when the width of 235U layer was chosen to be equal to 13 mm. The simulation of electromagnetic interaction with the corresponding materials was carried out for an electron linac with the following parameters: the average current 1 ma, the maximal energy of electron beam 100 MeV and the frequency 300 Hz. The tantalum target was used as the (e,γ)-converter. The thickness of the target is 6 mm. Fig. 2 presents the energy distributions of γ - quanta, which are calculated for two values of the electron energy using the software package GEANT. These spectra define the number of γ - quanta N of certain energy that escape from the converter in a case, when the initial electron beam contains N0 = 10 6 particles. Fig. 3 shows the spatial distribution of the integral γ - quantum flux, which is defined by the following relation max 0 0 5 1/ ( ) E MeV N N N E dE N γ γ γ= ∫ , (17) where N(Eγ) is the number of γ - quanta of energy Eγ. 77 As can be seen from Fig. 3, the γ - quantum flux appreciably decreases depending on the distance of penetrating into the assembly materials. This depen- dence has the exponential character. The jump that the curve undergoes in the second zone is explained by more strong flux attenuation in 235U layer in contrast with 56Fe layers. This is stipulated by value of the mass attenuation factor for 235U, which is greater than that for 56Fe in the γ - quantum energy region of interest. Fig. 3. Relative space distribution of the integral γ - quantum flux inside the subcritical assembly for the electron energy 100 MeV Fig. 4 presents the spatial distribution of density of neutron generation rate Q(x) (3) inside the subcritical assembly that is calculated for the electron beam energy 100 MeV. Fig. 4. Spatial distribution of Q(x) [×1016 cm-3s-1] inside the subcritical assembly In the first and third zones the curve of Q(x) exponential decreases that corresponds to the photon flux damping when the γ-radiation traverses the iron. In the second zone the noticeable enhancement of Q(x) value is observed. This burst of the neutron generation rate is mainly conditional on the contribution of the (γ,f) reaction on 235U to the formation of Q(x). The photofission cross section takes on values that are greater as compared with the (γ,n) cross sections for 235U and 56Fe. It should be also noted that mean number of neutrons produced at the single fission event of 235U is greater than two and has the tendency to increase with increasing photon energy. Besides the (γ,n) cross section for 235U is greater than that for 56Fe in the giant dipole resonance region. Results of solving the nonstationary problem to define the neutron flux inside the subcritical assembly are presented at different time moments of turning the external photon flux off toff in the succeeding figures. Fig. 5. Spatial distribution of the neutron flux Φ(x) [×1016 cm-2s-1] at time moments t1 = 3.544⋅10-7, t2 = 1 and t3 = 2 seconds. The photon flux is turned off at toff = 1 second Fig. 5 shows the space distribution of the neutron flux for different moments of time. At the initial stage for very small irradiation time (see the time moment t1) the distribution shape to a considerable extent differs from the distribution shape of the neutron flux for greater intervals of irradiation time. The neutron flux attains its maximum in the second layer (see Fig. 5) at the time moment t2 when the photon flux is turned off. The calculations show that the maximum value of the neutron flux Φmax at this time moment constitutes only about 80 % of Φmax value calculated for the corresponding stationary problem. After turning the photon flux off the space distribution of neutron flux at the time moment t3 has the same shape as for the time moment t2. However at the time moment t3 the Φmax value becomes by about two orders of magnitude smaller than that at the time moment t2. Time dependence of Φmax for two values of toff = 1 and toff = 0.01 second is presented in Fig. 6. In both cases at the time moment toff, when the photon flux is turned off, Φmax reaches practically the same magnitude. However during time after turning the photon flux off the magnitudes of Φmax differ to a considerable degree in going from one case to another. The distinction in the corresponding magnitudes of Φmax is about two orders. Note that the precursor nuclei of delayed neutrons plays role of the neutron source inside the subcritical assembly after turning the external photon flux off (see Eq.(1)). The concentration CU of precursor nuclei, that are product of fission of 235U, is proportional to the so- called neutron fluence F = Φ t. Since the flunce in the former case is greater than that in the latter one approximately by a factor of 10 2, the same ratio is observed between the CU values for these two time 78 moments toff. Apparently the distinction in the corresponding magnitudes of Φmax mentioned above is associated with this ratio between the CU values for the time moments following after toff = 1 and toff = 0.01 second, correspondingly. One can see that the ratio between the corresponding magnitudes of Φmax conserves during one second after turning the photon flux off in both cases. As a matter of fact this ratio takes place a longer time period. 0.0 0.4 0.8 1.2 1.6 1E-5 1E-4 1E-3 1E-2 jL t (s) Fig. 6. Dependences of Φmax [×10 16 cm -2s -1] (top) and jL [×10 16 cm -2s -1] (bottom) versus time. Curves are calculated for the photon flux turned off at toff = 1 second (solid) and toff = 0.01 second (dashed) The similar picture is observed in the time dependences of the neutron leakage current jL = D∂Φ/∂x from the right boundary of the assembly. The maximum value, which jL reaches at the time moment of turning the photon flux off toff = 1 second, is 3⋅1014 cm-2s-1 (see Fig. 6 (bottom)). After turning the external γ - source off at toff = 1 second the jL value rapidly falls off at first. Then jL changes very slowly during one second and takes on the magnitude of 3.4⋅1012 cm-2s-1 at the time moment t = 2 seconds. Under the condition toff = 0.01 second jL takes on the value of 5.4⋅1010 cm-2s-1 at the time moment t = 1.01 second. Note that the energy production density reaches the maximum value of about 17 kW t cm -3 in 235U layer at both time moments of turning the external photon flux off toff = 1 and toff = 0.01 second. After turning the photon flux off the energy production density decreases rapidly and takes on the values of 0.2 kW t cm - 3 and 0.32⋅10-2 kW t cm - 3 at the time moments t = 2 and t = 1.01 seconds, correspondingly. 4. CONCLUSIONS The feasibility of FM detection by the technique of delayed neutrons has been proved in the special case of the three-zone homogeneous subcritical assembly consisting of 235U and 56Fe. The main features of the technique have been studied for the case of the electron linac with beam energy 100 MeV and the tantalum (e,γ)- converter. The neutron leakage current, which characterizes the neutron flux emerging from the right boundary of the assembly, is initiated and driven by the γ - quantum flux, which generates neutrons with the rate Q(x) in each space point of the assembly. The maximum value of this neutron flux is equal to 3.5⋅10 14 cm-2s-1 for the stationary problem that has been calculated with the time-constant external photon flux. After turning the external γ-source off the neutron flux is completely maintained inside the assembly by precursor nuclei of delayed neutrons. These nuclei, which are concentrated in the second zone after fission of 235U, play the role of inner source that generates neutrons with the rate λUCU. Thus, the neutron flux substantially changes after turning the external γ- source off. The flux decreases at first very rapidly by two orders of magnitude. After that the neutron flux changes very slowly during rather long time. The jL value takes on 3.4⋅10 12 cm-2s-1 at the time moment t = 2 second for time of turning the external γ-source off toff = 1 second. For the case toff = 0.01 second the neutron flux takes on the value of 5.4⋅10 10 cm-2s-1 at the time moment t = 1.01 second. Hence, one can change the neutron flux emerging from the assembly by choosing the gamma irradiation time toff or the corresponding value of neutron fluence. In the present analysis it is shown that these neutron fluxes can take on the values, which are available for detection by the existing neutron detectors. The corresponding measurements can be carried out during rather long period (several seconds) since the neutron flux does not appreciably change over this period. To embody the technique of delayed neutrons under consideration the corresponding technology for producing photon fluxes of high intensity is developed using 100 MeV variable linac. It should be noted, that the results obtained in the present work, have a somewhat qualitative character, since the plane one-dimensional model of the subcritical assembly is not entirely corresponding to real cases. For this reason, the results are better of theoretical interest and serve to ascertain the main features of initiation and evolution neutron flux that is generated inside the subcritical assembly by the external γ-source. However, all the above-made approximations allowed us to describe the observed qualitative picture of the processes well enough. It should also be stated that results obtained with taking into account the neutron leakage from the assembly in the transverse direction, 79 that is an attribute of the real assembly model, can somewhat quantitatively alter the results presented above. Of course, results obtained in the framework of approach developed substantially depend on the material composition of the subcritical assembly. The special consideration is necessary in the case when the hydric materials are in the composition of the assembly. The main reason is associated with peculiarity of the neutron interaction with the hydrogen nuclei, which is characterized by strong anisotropy of scattering in laboratory coordinate system and heavy loss of energy in single collision as well. Thus, the use of diffusion approximation in the case leads to appreciable distortion of the neutron penetrability. A further work is necessary to study the technique under consideration using more complete mathematical models. ACKNOWLEDGEMENT The work is supported by the CRDF project «Facili- ty for detection of hidden nuclear devices in marine con- tainers-feasibility study», grant № UK-E2-5023-KH-04. REFERENCES 1. J. Romeyer–Dherby, L.M. Deider, Y. Beroud. Development of active neutron interrogation devices for alpha waste measurement. Proc of the ENC`90 (Lyon, France, 23-27 September 1990). 2. A. Lyossi, J. Romeyer-Dherby, F. Jallu, et al. Transuranic waste by photon interrogation and on- line delayed neutron counting // Nuclear Instruments and Methods in Physics Research. 2000, v. B160, p. 280-289. 3. S.P. Fomin, Yu.P. Mel’nik, V.V. Pilipenko, N.F. Shul’ga. Investigation of Self-Organization of the Non-Linear Nuclear Burning Regime in Fast Neutron Reactors // Annals of Nuclear Energy. 2005 (in press). 4. J. Crank, P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type // Proc Camb. Phil. Soc. 1947, v. 43, p. 50-67. 5. L.P. Abagyan, et al.. Group Constants for Calculations of Reactor and Shielding. Moscow: ″ Energoizdat″, 1981, 231 p. (in Russian). МЕТОД ОБНАРУЖЕНИЯ ДЕЛЯЩИХСЯ МАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ ЛИНЕЙНОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ А. Баратта, А.Н. Довбня, Л.В. Еран, С.П. Карасев, Н.М. Кирюхин, Ю.П. Мельник, Ю.Н. Ранюк, С.В. Трубников, И.Н. Шляхов Исследуются возможности метода обнаружения делящихся материалов с использованием импульсных потоков γ-квантов, генерируемых линейным ускорителем электронов. Метод основан на регистрации нейтронов, испускаемых делящимся материалом поcле γ-облучения (метод запаздывающих нейтронов). Развит диффузионный подход для описания пространственно-временной эволюции потока нейтронов в исследуемом объекте, который облучается внешним источником γ-квантов. Моделирование процессов электромагнитного взаимодействия с веществом проводится с помощью пакета программ GEANT. Осуществимость этого метода подтверждена результатами расчетов, проведенных в случае плоской одномерной модели для гомогенной трехзонной подкритической сборки, в которой слой 235U окружен двумя слоями 56Fe. МЕТОД ВИЯВЛЕННЯ МАТЕРІАЛІВ, ЩО ПОДІЛЯЮТЬСЯ, З ВИКОРИСТАННЯМ ЛІНІЙНОГО ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ А. Баратта, А.M. Довбня, Л.В. Єран, С.П. Карасьов, M.М. Кірюхін, Ю.П. Мельник, Ю.M. Ранюк, С.В. Трубніков, І.M. Шляхов Досліджуються можливості методу виявлення матеріалів, які поділяються, з використанням імпульсних потоків γ-квантів, що генерує лінійний прискорювач електронів. Метод засновано на реєстрації нейтронів, випромінюваних матеріалом, що поділяється, після γ-опромінення (метод запізнілих нейтронів). Розвинуто дифузійний підхід для опису просторово-часової еволюції потоку нейтронів у досліджуваному об'єкті, що опромінюється зовнішнім джерелом γ-квантів. Моделювання процесів електромагнітної взаємодії з речовиною проводиться за допомогою пакету програм GEANT. Можливість запровадження цього методу підтверджено результатами розрахунків, проведених у випадку плоскої одновимірної моделі для гомогенної трьохзонної підкритичної збірки, у якій шар з 235U оточений двома шарами з 56Fe. 80 1Penn State University, Pennsylvania, USA 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine The possibilities of technique for fissile materials detection using the pulse -quantum fluxes generated by electron linac are studied. The technique is based on detection of neutrons escaping from fissile materials after gamma irradiation (technique of delayed neutrons). The diffusion approach is developed for description of space-time evolution of neutron fluxes inside the prototype system, which is irradiated by external -source. The simulation of electromagnetic interaction with matter is performed using the program package GEANT. The feasibility of this technique is proved for the case of plane one-dimensional model for a three-zone homogeneous subcritical assembly consisting of 235U and 56Fe. PACS: 61.20.ja 3. RESULTS OF CALCULATIONS ACKNOWLEDGEMENT