Research of pumping properties of ion pumps and manometrical converters

Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid nitrogen. Requirements to SIP for storage ring (N-100M) were determined.

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Grevtsev, V.G., Mocheshnikov, N.I., Kozin, V.P.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81236
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Research of pumping properties of ion pumps and manometrical converters / V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin // Вопросы атомной науки и техники. — 2005. — № 6. — С. 90-92. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81236
record_format dspace
spelling irk-123456789-812362015-05-14T03:01:53Z Research of pumping properties of ion pumps and manometrical converters Grevtsev, V.G. Mocheshnikov, N.I. Kozin, V.P. Экспериментальные методы и обработка даных Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid nitrogen. Requirements to SIP for storage ring (N-100M) were determined. Досліджено залежності швидкості відкачування діодного та тріодного магніторазрядних насосів (МРН) в різних режимах їх роботи: періодичному, безперервному, з прогрівом та без нього, при охолодженні тріодного насоса (ТРІОН) скрапленим азотом. Вироблено вимоги до МРН для накопичувача Н-100М. Исследованы зависимости скорости откачки диодного и триодного магниторазрядных насосов (МРН) в различных режимах их работы: периодическом, непрерывном, с прогревом и без него, при охлаждении триодного насоса (ТРИОН) жидким азотом. Выработаны требования к МРН для накопителя Н-100М. 2005 Article Research of pumping properties of ion pumps and manometrical converters / V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin // Вопросы атомной науки и техники. — 2005. — № 6. — С. 90-92. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 07.30.Cy http://dspace.nbuv.gov.ua/handle/123456789/81236 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Экспериментальные методы и обработка даных
Экспериментальные методы и обработка даных
spellingShingle Экспериментальные методы и обработка даных
Экспериментальные методы и обработка даных
Grevtsev, V.G.
Mocheshnikov, N.I.
Kozin, V.P.
Research of pumping properties of ion pumps and manometrical converters
Вопросы атомной науки и техники
description Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid nitrogen. Requirements to SIP for storage ring (N-100M) were determined.
format Article
author Grevtsev, V.G.
Mocheshnikov, N.I.
Kozin, V.P.
author_facet Grevtsev, V.G.
Mocheshnikov, N.I.
Kozin, V.P.
author_sort Grevtsev, V.G.
title Research of pumping properties of ion pumps and manometrical converters
title_short Research of pumping properties of ion pumps and manometrical converters
title_full Research of pumping properties of ion pumps and manometrical converters
title_fullStr Research of pumping properties of ion pumps and manometrical converters
title_full_unstemmed Research of pumping properties of ion pumps and manometrical converters
title_sort research of pumping properties of ion pumps and manometrical converters
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Экспериментальные методы и обработка даных
url http://dspace.nbuv.gov.ua/handle/123456789/81236
citation_txt Research of pumping properties of ion pumps and manometrical converters / V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin // Вопросы атомной науки и техники. — 2005. — № 6. — С. 90-92. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT grevtsevvg researchofpumpingpropertiesofionpumpsandmanometricalconverters
AT mocheshnikovni researchofpumpingpropertiesofionpumpsandmanometricalconverters
AT kozinvp researchofpumpingpropertiesofionpumpsandmanometricalconverters
first_indexed 2025-07-06T05:42:49Z
last_indexed 2025-07-06T05:42:49Z
_version_ 1836875068704030720
fulltext RESEARCH OF PUMPING PROPERTIES OF ION PUMPS AND MANOMETRICAL CONVERTERS V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid nitrogen. Requirements to SIP for storage ring (N-100M) were determined. PACS: 07.30.Cy 1. INTRODUCTION In a vacuum chamber of N-100M, wich is closed high vacuum volume, for maintenance of dynamic pressure ~ 10-9 Тоrr will be used SIP and pumps on the basis of sprayed evaporable getter pump (EGP) and non-evaporated getters (NEG) [1]. One of the important parameters of any pump is its pumping speed Seff = Q/P, where Q is a gassing stream due to thermodesorbtion, leaks and synchrotron radiations (SR). When SIP is new or is regenerated with (warming up), a superficial layer of the cathode pure and gas reemission is small. In these conditions the pump is not saturated and value of Seff due to all mechanisms of pumpings maximal. As number of molecules implanted into the cathode is increased reemission due to ionic bombardment is increased too. As consequence Seff is decreased until balance between ionic implantation and gas desorbtion will set in. It results in "saturation" of the pump and Seff will be determined by activity getter of the sprayed film from the cathode and is equal to half of pumping speed of a "nonsaturated" pump. Thus, the effect of saturation depends on quantity of molecules of gas implanted into a cathode, i.e. time of saturation will depend on pressure. The pressure is lower there is more time before saturation of the pump. It is shown in table [2]. Dependence of time of saturation tн SIP from pressure P P, Torr 510-11 10-10 510-10 10-9 510-9 10-8 10-7 10-6 10-5 10-4 tн 650 days 320 days 70 days 35 days 7.3 day 3.7 day 0.4 day 7.7 min 6.2 min 0.75 min It is seen from the table, that in an optimum mode a SIP is in operation for a long time (years) under conditions Р < 10-10 Тоrr, and it is necessary to start an operation at low pressure, in particular, provided with a turbo molecular pump (TMP) (~ 10-8 Тоrr). 2. EXPERIMENTAL RESEARCHES On experimental bench [3] we investigated dependences of Seff of a diod (SIP-0.25) and a triod (TRION -150) SIP, which were in long operation, at various modes of their work periodic, continuous, with warming up and without it, at cooling of TRION by water and liquid nitrogen, etc. Volume of experimental vacuum bench is V = 73 l, specific gassing evolution q ≈ 1.5·10-12 Torr·l·cm-2·s-1. Fig. 1 shows pumping characteristics of a diod pump SIP-0.25 which incorporated to the measuring chamber through an equivalent aperture with conductivity U = 60 l/s. At periodic pumping (curve 1) Seff grows from one experimental session, and after eighty hours of continuous pumping Seff = 20 l/s at Рmax = 1∙10-9 Torr. From dependence Seff = f(P) at flooding of nitrogen as probe gas («the direct motion») (curve 2) one can see, that Seff = 42 l/s at Р = 1∙10-8 Torr, and at reduction of a stream of gas ("reverse motion") Seff = f(р) (curve 3) does not coincide with variation of curve 2. Apparently, reduction of pumping speed of the pump is caused by its stay at pressume Р > 10-6 Torr for long time. Further at a continuose pumping Seff is improved and achieves the initial value ~20 l/s. Curve 4 shows calculated value SSIP = )/()( effeff SUUS −⋅ = 150 l /s at pressure Р = 2∙10-8 Torr. Similar researches of pumping properties of a TRION pump are shown on Fig. 2. In a mode without liquid nitrogen Seff ≈ 10 l/s at Pmax ≈ 3.8∙10-9 Torr (curve 1) the maximal speed of pumping (curves 2, 3) is achieved at Р ≈ 2.5∙10-8 Torr and is equal to 50 l/s. In a mode with liquid nitrogen Seff ≈ 50 l/s at Pfin ≈ 8∙10-10 Torr (curve 4). At flooding gas Smax ≈ 280 l/s at Р ≈ 2∙10-8 Torr. At reduction of gas stream (reverse motion) essential reduction of pumping speed (hysteresis), curve 6 is observed. There, where at direct stream Smax ≈ 280 l/s (at Р ≈ 2∙10-8 Torr), Seff ≈ 19 l/s. Such reduction of pumping speed can be conditioned of work abnormalities of an ideal condensation pump. After the termination flooping in 90 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2005, № 6. Series: Nuclear Physics Investigations (45), p. 90-92. time, equal ~ to 1 hour, pumping speed is restored (curve 7). 1x10 - 9 1x10 - 8 1x10 - 7 1x10 - 6 0 20 40 60 80 100 120 140 160 S S IP , l/ s P, Torr 4 2 1 3 160 140 120 100 80 60 40 20 0 S si p, l/s 910− 810− 710− 610− P, Torr 1 2 3 4 Fig. 1. Pumpings characteristics of a diod pump 1 0 - 9 1 0 - 8 1 0 - 7 1 0 - 6 1 0 - 5 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 S , l / s P , T o r r 4 1 2 6 5 3 7 P, Torr 810− 710− 610− 510−910− 250 200 150 100 50 0 S si p, l/s 1 2 34 5 6 7 Fig. 2. Pumping properties of a TRION pump 2 5 3 0 3 5 4 0 4 5 5 0 1 0 - 1 0 1 0 - 9 1 0 - 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 P , T o rr t , h S , l / s 10-8 10-9 10-10 P , T or r 25 30 35 40 45 50 t, h 0 10 20 30 40 50 60 70 80 S , l/s Fig. 3. Pumping speed and pressure as vs. time A few continuous sessions of pumping with warming of practically all units and elements of the bench up to 200ºС have been carried out. Results of 52- hour session are shown on Fig. 3. Preliminary pumping was carried out by TMP with liquid nitrogen (1,5 hours) up to pressure ~7∙10-8 Torr at which warming up switched on for ~ 17 hours. After the warming end at Р ≈ 10-7 Torr, SIP-0.25 and TRION- 150. Further, about 22 hours it continuous pumping by both pumps was conducted (TMP at this time has been switched off). During this time (see Fig. 3) Seff was increasing with 7 l/s (at Р ≈ 7.9∙10-9 Torr) up to 29 l/s (at Р ≈ 1.3∙10-9 Torr). This stationary condition was holding for about 16 hours then in TRION-150 nitrogen was filled. During 0.5 hour pressure has improved up to Р ≈ 5∙10-10 Torr, and pumping speed increased up to 74 l/s at this pressure. Two day after that session (with warming) the system was not pumped out and was kept under residual gas pressure 10-4…10-6 Torr. After that the system was pumped out by the both pumps every during 8 hours session. If turned out, that keeping of the system at pressure 10-4…10-6 Torr resulted in practically full degradation of pumping speed. In 16 hours of parking the system was again pump out during 26 hours. Filling of liquid nitrogen resulted in increase of pumping speed up to ~ 45 l/s at Рfin ≈ 3.8∙10-10 Torr. Considering dates in Fig. 3 it is possible to make the following conclusions: warming up of the pumps and units of the installation results in increase of pumping speed (especially in a continuous mode) as without liquid nitrogen in TRION (from 14 l/s up to 29 l/s), and with liquid nitrogen (from 45 l/s up to 74l/s) at pressure in ranges 10-9 Torr without nitrogen and 10-10 Torr with nitrogen. For various operating modes SIP the spectral structure of residual gas was investigated. As vacuum volumes of the bench were in operation for long time and the basic means of "cleaning" of vacuum surfaces were hydrocarbons (gasoline, acetone, spirit, etc.) that, except for active gases, rather big percentage (on occasion up to 50 %) is made with hydrocarbons (up to weights ~ 100). Their amount decreases at presence of liquid nitrogen in TRION up to ~ 15 %). At small gasing maintaining in vacuum system of pressure over the range 10-5…10-6 Torr (for start SIP without use TMP when liquid nitrogen is necessary) is possible to use pumping properties ion pump a pressure unit (IMG-46 or IMG-32). From a balance equation: )(PV dt dPSQ −== (1) at V = Const it is possible to receive V St iePP − = (2) or 91 1 0 - 5 1 0 - 4 2 3 4 5 6 7 1 02 S l /s P , T o r r 510− 410− P, Torr 10 -2 S , l/s 2 3 4 5 6 7 Fig. 4. Association SIMG-46 = f(P) vs pressure P t PPV S i )/ln( = , (3) where V is volume of vacuum system; Pi is initial pressure; P is the current pressure; S is rate of pumping; t is the current time (in seconds). On Fig. 4 association SIMG-46 = f(P) received according Eq. (3) is given. It can be seen that Smax ≈ 6.4⋅ 10-2 l/s is conserved over the range pressures 10−5…10− 6Torr. At these measuring specific gas-making q was equal to1.5⋅10-12 Torr·l·cm-2 ·s-1, and a stream Q=2.7⋅10- 8 Torr·l·s-1. These sizes have been measured in vacuum volume of the stand by standard methods. At the long- lived pump-down by valve IMG-46 pressure P ≈ 9⋅10- 7 Torr that meets to rate of pumping at this pressure Slim ≈Q/Plim ≈ 3⋅10-2 l/s received. At collateral pump- down by valves IMG-46 (in the big camera) IMG-32 (in the small camera) [3] at pressure 1.5⋅10-5 Torr integral rate of pumping S Σ = 10.4⋅10-2 l/s, i.e. of a pumping speed IMG-32 SIMG-32 ≈ 4⋅10-2 l/s is received. 3. CONCLUSIONS The experimental investigation of pumping properties of ion pumps allows make a number of conclusions: − to use new or not earlier in long operation SIP as well diod, as triod types in a continuous operating mode and an opportunity of warming of both pumps, and units and elements of vacuum volume; − at physical and chemical methods of processing (cleaning) of vacuum surfaces to reduce to a minimum use of hydrocarbonic solvents. − for start of SIP to use a station of preliminary pumping on basis of TMP with liquid nitrogen, i.e. at Р < 10-7 Torr. For well degassed chambers (q < 2⋅10-12 Torr·l/cm-2 ·s-1) at preliminary pumping from Р ≈10-3…10-4 Torr up to pressure  10-6 Torr it is possible to use ion pump gauges of pressure IMG-46. The measured pumping speed in a range of pressure 10-4…10-5 Torr was equal to 0.06 l/s and our volume (~ 73 l) was pumped out from pressure 10-4 Torr up to pressure 9∙10-7 Torr for 5 hours. REFERENCES 1. V.G. Grevtsev, A.Yu. Zelinsky, I.I. Karnaukhov, N.I. Mocheshnikov. The analysis and choice of the system for attaining vacuum in a 300 MeV electron storage ring // Problems of atomic science and technology. Series: Nuclear Physics Investigations. 2003, № 2(41), p. 126. 2. Firm “Varian”, Inc. Vacuum technologies. www.varianinc.com. 3. V.G. Grevtsev, A.Yu. Zelinsky, I.I. Karnaukhov, I.M. Karnaukhov, V.P. Kozin, V.V. Markov, V.A. Martynenko, N.I. Mocheshnikov. Installation for research of properties of non-evaporated getters // Problems of atomic science and technology. Series: Nuclear Physics Investigations. 2003, № 5(13), p. 51. ИССЛЕДОВАНИЕ ОТКАЧНЫХ СВОЙСТВ МАГНИТОРАЗРЯДНЫХ НАСОСОВ И МАНОМЕТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ В.Г. Гревцев, Н.И. Мочешников, В.П. Козин Исследованы зависимости скорости откачки диодного и триодного магниторазрядных насосов (МРН) в различных режимах их работы: периодическом, непрерывном, с прогревом и без него, при охлаждении триодного насоса (ТРИОН) жидким азотом. Выработаны требования к МРН для накопителя Н-100М. ДОСЛІДЖЕННЯ ВІДКАЧНИХ ВЛАСТИВОСТЕЙ МАГНІТОРОЗРЯДНИХ НАСОСІВ ТА МАНОМЕТРИЧНИХ ПЕРЕТВОРЮВАЧІВ В.Г. Гревцев, М.І. Мочешников, В.П. Козін Досліджено залежності швидкості відкачування діодного та тріодного магніторазрядних насосів (МРН) в різних режимах їх роботи: періодичному, безперервному, з прогрівом та без нього, при охолодженні тріодного насоса (ТРІОН) скрапленим азотом. Вироблено вимоги до МРН для накопичувача Н-100М. 92 1. Introduction 2. Experimental researches 3. Conclusions REFERENCES