Research of pumping properties of ion pumps and manometrical converters
Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid nitrogen. Requirements to SIP for storage ring (N-100M) were determined.
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/81236 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Research of pumping properties of ion pumps and manometrical converters / V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin // Вопросы атомной науки и техники. — 2005. — № 6. — С. 90-92. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-81236 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-812362015-05-14T03:01:53Z Research of pumping properties of ion pumps and manometrical converters Grevtsev, V.G. Mocheshnikov, N.I. Kozin, V.P. Экспериментальные методы и обработка даных Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid nitrogen. Requirements to SIP for storage ring (N-100M) were determined. Досліджено залежності швидкості відкачування діодного та тріодного магніторазрядних насосів (МРН) в різних режимах їх роботи: періодичному, безперервному, з прогрівом та без нього, при охолодженні тріодного насоса (ТРІОН) скрапленим азотом. Вироблено вимоги до МРН для накопичувача Н-100М. Исследованы зависимости скорости откачки диодного и триодного магниторазрядных насосов (МРН) в различных режимах их работы: периодическом, непрерывном, с прогревом и без него, при охлаждении триодного насоса (ТРИОН) жидким азотом. Выработаны требования к МРН для накопителя Н-100М. 2005 Article Research of pumping properties of ion pumps and manometrical converters / V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin // Вопросы атомной науки и техники. — 2005. — № 6. — С. 90-92. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 07.30.Cy http://dspace.nbuv.gov.ua/handle/123456789/81236 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Экспериментальные методы и обработка даных Экспериментальные методы и обработка даных |
spellingShingle |
Экспериментальные методы и обработка даных Экспериментальные методы и обработка даных Grevtsev, V.G. Mocheshnikov, N.I. Kozin, V.P. Research of pumping properties of ion pumps and manometrical converters Вопросы атомной науки и техники |
description |
Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are
investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid
nitrogen. Requirements to SIP for storage ring (N-100M) were determined. |
format |
Article |
author |
Grevtsev, V.G. Mocheshnikov, N.I. Kozin, V.P. |
author_facet |
Grevtsev, V.G. Mocheshnikov, N.I. Kozin, V.P. |
author_sort |
Grevtsev, V.G. |
title |
Research of pumping properties of ion pumps and manometrical converters |
title_short |
Research of pumping properties of ion pumps and manometrical converters |
title_full |
Research of pumping properties of ion pumps and manometrical converters |
title_fullStr |
Research of pumping properties of ion pumps and manometrical converters |
title_full_unstemmed |
Research of pumping properties of ion pumps and manometrical converters |
title_sort |
research of pumping properties of ion pumps and manometrical converters |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2005 |
topic_facet |
Экспериментальные методы и обработка даных |
url |
http://dspace.nbuv.gov.ua/handle/123456789/81236 |
citation_txt |
Research of pumping properties of ion pumps and manometrical converters / V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin // Вопросы атомной науки и техники. — 2005. — № 6. — С. 90-92. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT grevtsevvg researchofpumpingpropertiesofionpumpsandmanometricalconverters AT mocheshnikovni researchofpumpingpropertiesofionpumpsandmanometricalconverters AT kozinvp researchofpumpingpropertiesofionpumpsandmanometricalconverters |
first_indexed |
2025-07-06T05:42:49Z |
last_indexed |
2025-07-06T05:42:49Z |
_version_ |
1836875068704030720 |
fulltext |
RESEARCH OF PUMPING PROPERTIES OF ION PUMPS AND
MANOMETRICAL CONVERTERS
V.G. Grevtsev, N.I. Mocheshnikov, V.P. Kozin
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
Dependences of speed of pumping of diod and triod ion pumps (SIP) in various modes of their work are
investigated: periodic, continuous, with warming up and without it, at cooling of triod pump (TRION) with liquid
nitrogen. Requirements to SIP for storage ring (N-100M) were determined.
PACS: 07.30.Cy
1. INTRODUCTION
In a vacuum chamber of N-100M, wich is closed
high vacuum volume, for maintenance of dynamic
pressure ~ 10-9 Тоrr will be used SIP and pumps on the
basis of sprayed evaporable getter pump (EGP) and
non-evaporated getters (NEG) [1]. One of the important
parameters of any pump is its pumping speed Seff = Q/P,
where Q is a gassing stream due to thermodesorbtion,
leaks and synchrotron radiations (SR).
When SIP is new or is regenerated with (warming
up), a superficial layer of the cathode pure and gas
reemission is small. In these conditions the pump is not
saturated
and value of Seff due to all mechanisms of pumpings
maximal. As number of molecules implanted into the
cathode is increased reemission due to ionic
bombardment is increased too. As consequence Seff is
decreased until balance between ionic implantation and
gas desorbtion will set in. It results in "saturation" of the
pump and Seff will be determined by activity getter of the
sprayed film from the cathode and is equal to half of
pumping speed of a "nonsaturated" pump. Thus, the
effect of saturation depends on quantity of molecules of
gas implanted into a cathode, i.e. time of saturation will
depend on pressure. The pressure is lower there is more
time before saturation of the pump. It is shown in table [2].
Dependence of time of saturation tн SIP from pressure P
P, Torr 510-11 10-10 510-10 10-9 510-9 10-8 10-7 10-6 10-5 10-4
tн
650
days
320
days
70
days
35
days
7.3
day
3.7
day
0.4
day
7.7
min
6.2
min
0.75
min
It is seen from the table, that in an optimum mode a
SIP is in operation for a long time (years) under
conditions Р < 10-10 Тоrr, and it is necessary to start an
operation at low pressure, in particular, provided with a
turbo molecular pump (TMP) (~ 10-8 Тоrr).
2. EXPERIMENTAL RESEARCHES
On experimental bench [3] we investigated
dependences of Seff of a diod (SIP-0.25) and a triod
(TRION -150) SIP, which were in long operation, at
various modes of their work periodic, continuous, with
warming up and without it, at cooling of TRION by
water and liquid nitrogen, etc. Volume of experimental
vacuum bench is V = 73 l, specific gassing evolution
q ≈ 1.5·10-12 Torr·l·cm-2·s-1.
Fig. 1 shows pumping characteristics of a diod pump
SIP-0.25 which incorporated to the measuring chamber
through an equivalent aperture with conductivity
U = 60 l/s. At periodic pumping (curve 1) Seff grows
from one experimental session, and after eighty hours of
continuous pumping Seff = 20 l/s at Рmax = 1∙10-9 Torr.
From dependence Seff = f(P) at flooding of nitrogen as
probe gas («the direct motion») (curve 2) one can see,
that Seff = 42 l/s at Р = 1∙10-8 Torr, and at reduction of a
stream of gas ("reverse motion") Seff = f(р) (curve 3)
does not coincide with variation of curve 2. Apparently,
reduction of pumping speed of the pump is caused by its
stay at pressume Р > 10-6 Torr for long time. Further at
a continuose pumping Seff is improved and achieves the
initial value ~20 l/s. Curve 4 shows calculated value
SSIP = )/()( effeff SUUS −⋅ = 150 l /s
at pressure Р = 2∙10-8 Torr.
Similar researches of pumping properties of a
TRION pump are shown on Fig. 2.
In a mode without liquid nitrogen Seff ≈ 10 l/s at
Pmax ≈ 3.8∙10-9 Torr (curve 1) the maximal speed of
pumping (curves 2, 3) is achieved at Р ≈ 2.5∙10-8 Torr
and is equal to 50 l/s. In a mode with liquid nitrogen
Seff ≈ 50 l/s at Pfin ≈ 8∙10-10 Torr (curve 4). At flooding
gas Smax ≈ 280 l/s at Р ≈ 2∙10-8 Torr. At reduction of gas
stream (reverse motion) essential reduction of pumping
speed (hysteresis), curve 6 is observed. There, where at
direct stream Smax ≈ 280 l/s (at Р ≈ 2∙10-8 Torr),
Seff ≈ 19 l/s. Such reduction of pumping speed can be
conditioned of work abnormalities of an ideal
condensation pump. After the termination flooping in
90 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2005, № 6.
Series: Nuclear Physics Investigations (45), p. 90-92.
time, equal ~ to 1 hour, pumping speed is restored
(curve 7).
1x10 - 9 1x10 - 8 1x10 - 7 1x10 - 6
0
20
40
60
80
100
120
140
160
S
S
IP
,
l/
s
P, Torr
4
2
1
3
160
140
120
100
80
60
40
20
0
S si
p,
l/s
910− 810− 710− 610−
P, Torr
1
2
3
4
Fig. 1. Pumpings characteristics of a diod pump
1 0 - 9 1 0 - 8 1 0 - 7 1 0 - 6 1 0 - 5
0
5 0
1 0 0
1 5 0
2 0 0
2 5 0
S
,
l
/
s
P , T o r r
4
1
2
6
5
3
7
P, Torr
810− 710− 610− 510−910−
250
200
150
100
50
0
S si
p,
l/s
1
2
34
5
6
7
Fig. 2. Pumping properties of a TRION pump
2 5 3 0 3 5 4 0 4 5 5 0
1 0 - 1 0
1 0 - 9
1 0 - 8
0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
P
,
T
o
rr
t , h
S
,
l
/
s
10-8
10-9
10-10
P
, T
or
r
25 30 35 40 45 50
t, h
0
10
20
30
40
50
60
70
80
S
,
l/s
Fig. 3. Pumping speed and pressure as vs. time
A few continuous sessions of pumping with
warming of practically all units and elements of the
bench up to 200ºС have been carried out. Results of 52-
hour session are shown on Fig. 3.
Preliminary pumping was carried out by TMP with
liquid nitrogen (1,5 hours) up to pressure ~7∙10-8 Torr at
which warming up switched on for ~ 17 hours. After the
warming end at Р ≈ 10-7 Torr, SIP-0.25 and TRION-
150. Further, about 22 hours it continuous pumping by
both pumps was conducted (TMP at this time has been
switched off). During this time (see Fig. 3) Seff was
increasing with 7 l/s (at Р ≈ 7.9∙10-9 Torr) up to 29 l/s
(at Р ≈ 1.3∙10-9 Torr).
This stationary condition was holding for about 16
hours then in TRION-150 nitrogen was filled. During
0.5 hour pressure has improved up to Р ≈ 5∙10-10 Torr,
and pumping speed increased up to 74 l/s at this
pressure.
Two day after that session (with warming) the
system was not pumped out and was kept under residual
gas pressure 10-4…10-6 Torr. After that the system was
pumped out by the both pumps every during 8 hours
session. If turned out, that keeping of the system at
pressure 10-4…10-6 Torr resulted in practically full
degradation of pumping speed. In 16 hours of parking
the system was again pump out during 26 hours. Filling
of liquid nitrogen resulted in increase of pumping speed
up to ~ 45 l/s at Рfin ≈ 3.8∙10-10 Torr.
Considering dates in Fig. 3 it is possible to make the
following conclusions: warming up of the pumps and
units of the installation results in increase of pumping
speed (especially in a continuous mode) as without
liquid nitrogen in TRION (from 14 l/s up to 29 l/s), and
with liquid nitrogen (from 45 l/s up to 74l/s) at pressure
in ranges 10-9 Torr without nitrogen and 10-10 Torr with
nitrogen.
For various operating modes SIP the spectral
structure of residual gas was investigated. As vacuum
volumes of the bench were in operation for long time
and the basic means of "cleaning" of vacuum surfaces
were hydrocarbons (gasoline, acetone, spirit, etc.) that,
except for active gases, rather big percentage (on
occasion up to 50 %) is made with hydrocarbons (up to
weights ~ 100). Their amount decreases at presence of
liquid nitrogen in TRION up to ~ 15 %).
At small gasing maintaining in vacuum system of
pressure over the range 10-5…10-6 Torr (for start SIP
without use TMP when liquid nitrogen is necessary) is
possible to use pumping properties ion pump a pressure
unit (IMG-46 or IMG-32). From a balance equation:
)(PV
dt
dPSQ −== (1)
at V = Const it is possible to receive
V
St
iePP
−
= (2)
or
91
1 0 - 5 1 0 - 4
2
3
4
5
6
7
1
02
S
l
/s
P , T o r r
510− 410−
P, Torr
10
-2
S
,
l/s
2
3
4
5
6
7
Fig. 4. Association SIMG-46 = f(P) vs pressure P
t
PPV
S i )/ln(
= , (3)
where V is volume of vacuum system; Pi is initial
pressure; P is the current pressure; S is rate of pumping;
t is the current time (in seconds).
On Fig. 4 association SIMG-46 = f(P) received
according Eq. (3) is given. It can be seen that Smax ≈ 6.4⋅
10-2 l/s is conserved over the range pressures 10−5…10−
6Torr. At these measuring specific gas-making q was
equal to1.5⋅10-12 Torr·l·cm-2 ·s-1, and a stream Q=2.7⋅10-
8 Torr·l·s-1. These sizes have been measured in vacuum
volume of the stand by standard methods. At the long-
lived pump-down by valve IMG-46 pressure P ≈ 9⋅10-
7 Torr that meets to rate of pumping at this pressure
Slim ≈Q/Plim ≈ 3⋅10-2 l/s received. At collateral pump-
down by valves IMG-46 (in the big camera) IMG-32 (in
the small camera) [3] at pressure 1.5⋅10-5 Torr integral
rate of pumping S Σ = 10.4⋅10-2 l/s, i.e. of a pumping
speed IMG-32 SIMG-32 ≈ 4⋅10-2 l/s is received.
3. CONCLUSIONS
The experimental investigation of pumping
properties of ion pumps allows make a number of
conclusions:
− to use new or not earlier in long operation SIP as
well diod, as triod types in a continuous operating mode
and an opportunity of warming of both pumps, and units
and elements of vacuum volume;
− at physical and chemical methods of processing
(cleaning) of vacuum surfaces to reduce to a minimum
use of hydrocarbonic solvents.
− for start of SIP to use a station of preliminary
pumping on basis of TMP with liquid nitrogen, i.e. at
Р < 10-7 Torr. For well degassed chambers (q < 2⋅10-12
Torr·l/cm-2 ·s-1) at preliminary pumping from
Р ≈10-3…10-4 Torr up to pressure 10-6 Torr it is
possible to use ion pump gauges of pressure IMG-46.
The measured pumping speed in a range of pressure
10-4…10-5 Torr was equal to 0.06 l/s and our volume
(~ 73 l) was pumped out from pressure 10-4 Torr up to
pressure 9∙10-7 Torr for 5 hours.
REFERENCES
1. V.G. Grevtsev, A.Yu. Zelinsky, I.I. Karnaukhov,
N.I. Mocheshnikov. The analysis and choice of the
system for attaining vacuum in a 300 MeV electron
storage ring // Problems of atomic science and
technology. Series: Nuclear Physics Investigations.
2003, № 2(41), p. 126.
2. Firm “Varian”, Inc. Vacuum technologies.
www.varianinc.com.
3. V.G. Grevtsev, A.Yu. Zelinsky, I.I. Karnaukhov,
I.M. Karnaukhov, V.P. Kozin, V.V. Markov,
V.A. Martynenko, N.I. Mocheshnikov. Installation
for research of properties of non-evaporated getters
// Problems of atomic science and technology.
Series: Nuclear Physics Investigations. 2003,
№ 5(13), p. 51.
ИССЛЕДОВАНИЕ ОТКАЧНЫХ СВОЙСТВ МАГНИТОРАЗРЯДНЫХ НАСОСОВ И
МАНОМЕТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ
В.Г. Гревцев, Н.И. Мочешников, В.П. Козин
Исследованы зависимости скорости откачки диодного и триодного магниторазрядных насосов (МРН) в
различных режимах их работы: периодическом, непрерывном, с прогревом и без него, при охлаждении
триодного насоса (ТРИОН) жидким азотом. Выработаны требования к МРН для накопителя Н-100М.
ДОСЛІДЖЕННЯ ВІДКАЧНИХ ВЛАСТИВОСТЕЙ МАГНІТОРОЗРЯДНИХ НАСОСІВ ТА
МАНОМЕТРИЧНИХ ПЕРЕТВОРЮВАЧІВ
В.Г. Гревцев, М.І. Мочешников, В.П. Козін
Досліджено залежності швидкості відкачування діодного та тріодного магніторазрядних насосів (МРН) в
різних режимах їх роботи: періодичному, безперервному, з прогрівом та без нього, при охолодженні
тріодного насоса (ТРІОН) скрапленим азотом. Вироблено вимоги до МРН для накопичувача Н-100М.
92
1. Introduction
2. Experimental researches
3. Conclusions
REFERENCES
|