Aplication of accelerated particles for explosives identification

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Sanin, V.M., Bomko, V.A., Egorov, O.M., Kobets, A.P., Mazalov, Yu.P., Onishenko, I.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 1999
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81504
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Aplication of accelerated particles for explosives identification / V.M. Sanin V.A. Bomko, O.M. Egorov, A.P. Kobets, Yu.P. Mazalov, I.M. Onishenko // Вопросы атомной науки и техники. — 1999. — № 4. — С. 91-92. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81504
record_format dspace
spelling irk-123456789-815042015-05-18T03:02:13Z Aplication of accelerated particles for explosives identification Sanin, V.M. Bomko, V.A. Egorov, O.M. Kobets, A.P. Mazalov, Yu.P. Onishenko, I.M. 1999 Article Aplication of accelerated particles for explosives identification / V.M. Sanin V.A. Bomko, O.M. Egorov, A.P. Kobets, Yu.P. Mazalov, I.M. Onishenko // Вопросы атомной науки и техники. — 1999. — № 4. — С. 91-92. — Бібліогр.: 5 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/81504 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Sanin, V.M.
Bomko, V.A.
Egorov, O.M.
Kobets, A.P.
Mazalov, Yu.P.
Onishenko, I.M.
spellingShingle Sanin, V.M.
Bomko, V.A.
Egorov, O.M.
Kobets, A.P.
Mazalov, Yu.P.
Onishenko, I.M.
Aplication of accelerated particles for explosives identification
Вопросы атомной науки и техники
author_facet Sanin, V.M.
Bomko, V.A.
Egorov, O.M.
Kobets, A.P.
Mazalov, Yu.P.
Onishenko, I.M.
author_sort Sanin, V.M.
title Aplication of accelerated particles for explosives identification
title_short Aplication of accelerated particles for explosives identification
title_full Aplication of accelerated particles for explosives identification
title_fullStr Aplication of accelerated particles for explosives identification
title_full_unstemmed Aplication of accelerated particles for explosives identification
title_sort aplication of accelerated particles for explosives identification
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/81504
citation_txt Aplication of accelerated particles for explosives identification / V.M. Sanin V.A. Bomko, O.M. Egorov, A.P. Kobets, Yu.P. Mazalov, I.M. Onishenko // Вопросы атомной науки и техники. — 1999. — № 4. — С. 91-92. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT saninvm aplicationofacceleratedparticlesforexplosivesidentification
AT bomkova aplicationofacceleratedparticlesforexplosivesidentification
AT egorovom aplicationofacceleratedparticlesforexplosivesidentification
AT kobetsap aplicationofacceleratedparticlesforexplosivesidentification
AT mazalovyup aplicationofacceleratedparticlesforexplosivesidentification
AT onishenkoim aplicationofacceleratedparticlesforexplosivesidentification
first_indexed 2025-07-06T06:29:02Z
last_indexed 2025-07-06T06:29:02Z
_version_ 1836877977252528128
fulltext APPLICATION OF ACCELERATED PARTICLES FOR EXPLOSIVES IDENTIFICATION V.M.Sanin, V.A.Bomko, O.M.Egorov, A.P.Kobets, Yu.P.Mazalov, I.M.Onishenko NSC KIPT, Kharkov, Ukraine At the present time the problem of an explosive detection independent on outer shell presence or its composition, including a plastic explosive, is urgent in context of terrorism and enormous quantity of minefields that are left after wars and local armed conflicts. Explosive detection in the passenger luggage, cargo, and demining is an acute global problem that requires elaboration of new detection principles. A distinctive feature of all kinds of powerful chemical explosives is an anomalous nitrogen content (from 18% to 43%). There is a some correlation of nitrogen, carbon and oxygen content. These features can be useful to identification of explosives. Currently many physical methods of an explosive detection are known. For instance: The improved X-ray methods: Two beams method allows one to determine the absorption coefficients. Compton back scattering together with conventional X-ray method allows one to detect the light materials. Detecting the explosive evaporation. Nuclear quadrupole resonance (NQR) is a technique in RF spectroscopy, which is based on the observation of RF signals from nitrogen [1]. It allows to identify some explosives, but now it is insufficiently advanced. Visualization of the hidden subjects by X-rays scanning was proposed by authors [2, 3]. This method is similar to positron annihilation tomography. It uses X-rays with the energy lower than thresholds of nuclear reactions. The nuclear elemental analysis is more promising for explosive detection. The neutrons and high energy photons are used for excitation of nuclear reactions on explosive elements. This in turn leads to the generation of characteristic γ-rays, that allow one to identify these elements. There is a simple method based on an electron accelerator. The accelerated electrons strike a heavy metal target producing bremsstrahlung radiation with endpoint energy equal to the electron beam energy. The gamma-beam interacts with the explosive nitrogen and excites a photonuclear reaction 14N(γ,n) 13N. The stable nitrogen isotope 14N converts to radioactive isotope 13N, which then decays with a 10 min half-life via positron emission to 13C. The positron immediately annihilates producing two 511 keV photons that are easily detected using standard scintillation detectors. A threshold of the 14N(γ,n) 13N reaction is about 10.6 MeV. Other elements in explosives and soil have photonuclear reaction thresholds above 13 MeV, as shown in Fig.1, produce no positrons, or have very short half-lives. Table lists the reaction thresholds for any elements and half-life of corresponding daughter nuclei (β+ decay). Gn_Al 10 15 20 25 30 5 0 5 10 15 20 Энергия фотона, МэВ С еч ен ие , м ба рн Fig. 1. Cross sections of (γ,n) reactions in 14N - 1, 28Si - 2, 27Al - 3, 16O - 4. Element Threshold Daughter nucleus Half-life (β+ decay) 14N 10.6 13N 10.1 min 16O 15.7 15O Stable 27Al 13.1 26Al 6.7 sec 28Si 17.2 27Si 4 sec Thus, an optimal accelerator for this method is the RF linac with electron energies of 13.5-14 MeV for the gamma-beam producing. A portable linac can be mounted on a remotely controlled vehicle for demining [4] or placed in airports for inspection of the baggage. The bremsstrahlung spectrum is very broad and is distributed from small energies up to energy of an electron, but only energies, that are higher than a threshold of the photonuclear reaction 14N(γ,n) 13N, are useful. An electron penetrating in a target dissipates its energy, and eventually riches a threshold energy. The electrons with energies lower than 10.6 MeV are useless because the radiation, generated by them, creates only unnecessary background. This in turn leads to the restriction of the target thickness. This thickness is determined by energy losses in the target. Calculations show that for tantalum target it is equal approximately 0.18 of the radiation length. Actually this thickness can be less because multiple electron scattering in target leads to small increasing of a gamma flux density with increasing of the target thickness. In addition to this, near threshold cross-sections is very small, and the reaction yields are negligible at this energy region (near to 10.6 MeV). We propose an elaboration of this method both for demining and for airport inspection purposes in Ukraine on the base of advanced acceleration technique at the National Scientific Center “Kharkov Institute of Physics and Tecnology”. The possible version of the demining system similar to [5] is shown in Fig. 2. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4. Серия: Ядерно-физические исследования (35), с. 91-92. 91 4 3 2 1 Lina c Detector min e vehicle Fig. 2. The proposed remotely controlled system for a mine detection. Irradiation expositions are carried out periodically. The detection of the annihilation gamma- quanta from 13N is carried out during the pauses, therefore immediate gamma-quanta from processes of electron-positron pair production are not detected. This system with sliding detectors can provide a detection of explosives at the distance. Instead of local metal target we consider a possibility to use air as target too. The required beam power depends on a distance to a mine and an explosive amount, and it can be equal 1-10 kW. The possible version of the airport inspection system is shown in Fig. 3. Baggage Bremsstrahlung Conveyor Detectors Linac Detectors Filter Fig.3. The airport inspection system. This system can provide simultaneously several images of luggage contents. A sensitive detector array provides a three-dimensional image of activity concentration of the nitrogen. Detectors, which have high efficiency in a soft X-ray region but low efficiency for a high-energy X-ray, can map a distribution of the physical density similar to a conventional method. The use of two detectors, which have different sensitivities in different spectral regions, allows us to realize a two- ray method for measurements of absorption coefficients. An image in a back-scattered radiation can be obtained too. Three-dimension nitrogen distributions can be obtained similarly to a positron emission tomography in the medicine. In this method two oppositely directed coincident 0.511 MeV photons are counted simultaneously by the detector array. The high-energy photons from the accelerator easily penetrate through thick materials and are capable to detect nitrogen containing materials in large containers as shown in Fig. 4. Collimator Detector array Container Bremsstrahlung Explosive RF linac X-rays 0.511 MeV Detector array Fig.4. The container inspection system. Thus the linac concept appears to be a very attractive candidate for both the detection of explosives in cargo and buried land mines. REFERENCES 1. J.A.S. Smith, Chem. Soc. Reviews, 15, 1976, p.p.225-260. 2. V.M. Sanin, Yu.P. Mazalov, A.M. Egorov, A.N. Dovbnja, "The use of electron accelerators for underground gamma-location", XVI Soveshchanije po Uskoriteljam Zarjazhennih Chasnits, Protvino, 1999, p.p.231-234. (in Russian) 3. A.M. Egorov, Yu.P. Mazalov, V.M. Sanin, "Underground Gamma-Llocation", Voprosi Atomnoi Nauki i Tekhniki, serija: Jaderno- Physicheskije Issledovanija, vipusk 4,5 (31,32), Kharkov, 1997, p.p.187-189. (in Russian). 4. K. Whitham, R.C. Miller, H. Anamkath, et al., "Linear accelerator for explosive detection", Nucl. Instr. And Meth., B56, 1991, p.p. 825-828. 5. K.W. Habiger, J.R.Clifford, R.B.Miller and W.F. McCullough. Explosive detection with energetic photons // Nucl. Instr. And Meth., B56/57, 1991, pp.834-838. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4. Серия: Ядерно-физические исследования (35), с. 91-92. 91