Aplication of accelerated particles for explosives identification
Збережено в:
Дата: | 1999 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
1999
|
Назва видання: | Вопросы атомной науки и техники |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/81504 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Aplication of accelerated particles for explosives identification / V.M. Sanin V.A. Bomko, O.M. Egorov, A.P. Kobets, Yu.P. Mazalov, I.M. Onishenko // Вопросы атомной науки и техники. — 1999. — № 4. — С. 91-92. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-81504 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-815042015-05-18T03:02:13Z Aplication of accelerated particles for explosives identification Sanin, V.M. Bomko, V.A. Egorov, O.M. Kobets, A.P. Mazalov, Yu.P. Onishenko, I.M. 1999 Article Aplication of accelerated particles for explosives identification / V.M. Sanin V.A. Bomko, O.M. Egorov, A.P. Kobets, Yu.P. Mazalov, I.M. Onishenko // Вопросы атомной науки и техники. — 1999. — № 4. — С. 91-92. — Бібліогр.: 5 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/81504 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Sanin, V.M. Bomko, V.A. Egorov, O.M. Kobets, A.P. Mazalov, Yu.P. Onishenko, I.M. |
spellingShingle |
Sanin, V.M. Bomko, V.A. Egorov, O.M. Kobets, A.P. Mazalov, Yu.P. Onishenko, I.M. Aplication of accelerated particles for explosives identification Вопросы атомной науки и техники |
author_facet |
Sanin, V.M. Bomko, V.A. Egorov, O.M. Kobets, A.P. Mazalov, Yu.P. Onishenko, I.M. |
author_sort |
Sanin, V.M. |
title |
Aplication of accelerated particles for explosives identification |
title_short |
Aplication of accelerated particles for explosives identification |
title_full |
Aplication of accelerated particles for explosives identification |
title_fullStr |
Aplication of accelerated particles for explosives identification |
title_full_unstemmed |
Aplication of accelerated particles for explosives identification |
title_sort |
aplication of accelerated particles for explosives identification |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
1999 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/81504 |
citation_txt |
Aplication of accelerated particles for explosives identification / V.M. Sanin V.A. Bomko, O.M. Egorov, A.P. Kobets, Yu.P. Mazalov, I.M. Onishenko // Вопросы атомной науки и техники. — 1999. — № 4. — С. 91-92. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT saninvm aplicationofacceleratedparticlesforexplosivesidentification AT bomkova aplicationofacceleratedparticlesforexplosivesidentification AT egorovom aplicationofacceleratedparticlesforexplosivesidentification AT kobetsap aplicationofacceleratedparticlesforexplosivesidentification AT mazalovyup aplicationofacceleratedparticlesforexplosivesidentification AT onishenkoim aplicationofacceleratedparticlesforexplosivesidentification |
first_indexed |
2025-07-06T06:29:02Z |
last_indexed |
2025-07-06T06:29:02Z |
_version_ |
1836877977252528128 |
fulltext |
APPLICATION OF ACCELERATED PARTICLES FOR EXPLOSIVES
IDENTIFICATION
V.M.Sanin, V.A.Bomko, O.M.Egorov, A.P.Kobets, Yu.P.Mazalov, I.M.Onishenko
NSC KIPT, Kharkov, Ukraine
At the present time the problem of an explosive
detection independent on outer shell presence or its
composition, including a plastic explosive, is urgent in
context of terrorism and enormous quantity of
minefields that are left after wars and local armed
conflicts. Explosive detection in the passenger luggage,
cargo, and demining is an acute global problem that
requires elaboration of new detection principles.
A distinctive feature of all kinds of powerful
chemical explosives is an anomalous nitrogen content
(from 18% to 43%). There is a some correlation of
nitrogen, carbon and oxygen content. These features can
be useful to identification of explosives.
Currently many physical methods of an
explosive detection are known. For instance:
The improved X-ray methods:
Two beams method allows one to determine the
absorption coefficients.
Compton back scattering together with
conventional X-ray method allows one to detect
the light materials.
Detecting the explosive evaporation.
Nuclear quadrupole resonance (NQR) is a technique
in RF spectroscopy, which is based on the
observation of RF signals from nitrogen [1]. It
allows to identify some explosives, but now it is
insufficiently advanced.
Visualization of the hidden subjects by X-rays
scanning was proposed by authors [2, 3]. This
method is similar to positron annihilation
tomography. It uses X-rays with the energy lower
than thresholds of nuclear reactions.
The nuclear elemental analysis is more promising for
explosive detection. The neutrons and high energy
photons are used for excitation of nuclear reactions
on explosive elements. This in turn leads to the
generation of characteristic γ-rays, that allow one
to identify these elements.
There is a simple method based on an electron
accelerator. The accelerated electrons strike a heavy
metal target producing bremsstrahlung radiation with
endpoint energy equal to the electron beam energy. The
gamma-beam interacts with the explosive nitrogen and
excites a photonuclear reaction 14N(γ,n) 13N. The stable
nitrogen isotope 14N converts to radioactive isotope 13N,
which then decays with a 10 min half-life via positron
emission to 13C. The positron immediately annihilates
producing two 511 keV photons that are easily detected
using standard scintillation detectors. A threshold of the
14N(γ,n) 13N reaction is about 10.6 MeV. Other elements
in explosives and soil have photonuclear reaction
thresholds above 13 MeV, as shown in Fig.1, produce
no positrons, or have very short half-lives. Table lists
the reaction thresholds for any elements and half-life of
corresponding daughter nuclei (β+ decay).
Gn_Al
10 15 20 25 30
5
0
5
10
15
20
Энергия фотона, МэВ
С
еч
ен
ие
, м
ба
рн
Fig. 1. Cross sections of (γ,n) reactions in 14N - 1,
28Si - 2, 27Al - 3, 16O - 4.
Element Threshold Daughter
nucleus
Half-life (β+ decay)
14N 10.6 13N 10.1 min
16O 15.7 15O Stable
27Al 13.1 26Al 6.7 sec
28Si 17.2 27Si 4 sec
Thus, an optimal accelerator for this method is
the RF linac with electron energies of 13.5-14 MeV for
the gamma-beam producing. A portable linac can be
mounted on a remotely controlled vehicle for demining
[4] or placed in airports for inspection of the baggage.
The bremsstrahlung spectrum is very broad and
is distributed from small energies up to energy of an
electron, but only energies, that are higher than a
threshold of the photonuclear reaction 14N(γ,n) 13N, are
useful. An electron penetrating in a target dissipates its
energy, and eventually riches a threshold energy.
The electrons with energies lower than 10.6 MeV
are useless because the radiation, generated by them,
creates only unnecessary background. This in turn leads
to the restriction of the target thickness. This thickness
is determined by energy losses in the target.
Calculations show that for tantalum target it is equal
approximately 0.18 of the radiation length. Actually this
thickness can be less because multiple electron
scattering in target leads to small increasing of a gamma
flux density with increasing of the target thickness. In
addition to this, near threshold cross-sections is very
small, and the reaction yields are negligible at this
energy region (near to 10.6 MeV).
We propose an elaboration of this method both
for demining and for airport inspection purposes in
Ukraine on the base of advanced acceleration technique
at the National Scientific Center “Kharkov Institute of
Physics and Tecnology”.
The possible version of the demining system similar
to [5] is shown in Fig. 2.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4.
Серия: Ядерно-физические исследования (35), с. 91-92.
91
4 3
2
1
Lina
c
Detector
min
e
vehicle
Fig. 2. The proposed remotely controlled system for a
mine detection.
Irradiation expositions are carried out
periodically. The detection of the annihilation gamma-
quanta from 13N is carried out during the pauses,
therefore immediate gamma-quanta from processes of
electron-positron pair production are not detected.
This system with sliding detectors can provide a
detection of explosives at the distance. Instead of local
metal target we consider a possibility to use air as target
too. The required beam power depends on a distance to
a mine and an explosive amount, and it can be equal
1-10 kW.
The possible version of the airport inspection
system is shown in Fig. 3.
Baggage
Bremsstrahlung Conveyor
Detectors
Linac Detectors
Filter
Fig.3. The airport inspection system.
This system can provide simultaneously several
images of luggage contents. A sensitive detector array
provides a three-dimensional image of activity
concentration of the nitrogen. Detectors, which have
high efficiency in a soft X-ray region but low efficiency
for a high-energy X-ray, can map a distribution of the
physical density similar to a conventional method. The
use of two detectors, which have different sensitivities
in different spectral regions, allows us to realize a two-
ray method for measurements of absorption coefficients.
An image in a back-scattered radiation can be obtained
too.
Three-dimension nitrogen distributions can be
obtained similarly to a positron emission tomography in
the medicine. In this method two oppositely directed
coincident 0.511 MeV photons are counted
simultaneously by the detector array.
The high-energy photons from the accelerator
easily penetrate through thick materials and are capable
to detect nitrogen containing materials in large
containers as shown in Fig. 4.
Collimator
Detector array
Container
Bremsstrahlung Explosive
RF linac
X-rays 0.511 MeV
Detector array
Fig.4. The container inspection system.
Thus the linac concept appears to be a very
attractive candidate for both the detection of explosives
in cargo and buried land mines.
REFERENCES
1. J.A.S. Smith, Chem. Soc. Reviews, 15, 1976,
p.p.225-260.
2. V.M. Sanin, Yu.P. Mazalov, A.M. Egorov, A.N.
Dovbnja, "The use of electron accelerators for
underground gamma-location", XVI Soveshchanije
po Uskoriteljam Zarjazhennih Chasnits, Protvino,
1999, p.p.231-234. (in Russian)
3. A.M. Egorov, Yu.P. Mazalov, V.M. Sanin,
"Underground Gamma-Llocation", Voprosi
Atomnoi Nauki i Tekhniki, serija: Jaderno-
Physicheskije Issledovanija, vipusk 4,5 (31,32),
Kharkov, 1997, p.p.187-189. (in Russian).
4. K. Whitham, R.C. Miller, H. Anamkath, et al.,
"Linear accelerator for explosive detection", Nucl.
Instr. And Meth., B56, 1991, p.p. 825-828.
5. K.W. Habiger, J.R.Clifford, R.B.Miller and
W.F. McCullough. Explosive detection with
energetic photons // Nucl. Instr. And Meth., B56/57,
1991, pp.834-838.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4.
Серия: Ядерно-физические исследования (35), с. 91-92.
91
|