Multi-beam accelerating module calculation

As has been pointed in [1], a multi-beam accelerating cavity with drift tubes is suggested to be used in a linac for the purpose of overcoming limitations on the mean current. In this paper the dispersion equation for such a construction was deduced and analyzed.

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Gavrilov, N.M., Alexeyenko, S.V., Komarov, D.A., Netchaev, N.N., Struckov, J.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 1999
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81530
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multi-beam accelerating module calculation / N.M. Gavrilov, S.V. Alexeyenko, D.A. Komarov, N.N. Netchaev, J.N. Struckov // Вопросы атомной науки и техники. — 1999. — № 4. — С. 52-53. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81530
record_format dspace
spelling irk-123456789-815302015-05-18T03:02:34Z Multi-beam accelerating module calculation Gavrilov, N.M. Alexeyenko, S.V. Komarov, D.A. Netchaev, N.N. Struckov, J.N. As has been pointed in [1], a multi-beam accelerating cavity with drift tubes is suggested to be used in a linac for the purpose of overcoming limitations on the mean current. In this paper the dispersion equation for such a construction was deduced and analyzed. 1999 Article Multi-beam accelerating module calculation / N.M. Gavrilov, S.V. Alexeyenko, D.A. Komarov, N.N. Netchaev, J.N. Struckov // Вопросы атомной науки и техники. — 1999. — № 4. — С. 52-53. — Бібліогр.: 6 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/81530 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description As has been pointed in [1], a multi-beam accelerating cavity with drift tubes is suggested to be used in a linac for the purpose of overcoming limitations on the mean current. In this paper the dispersion equation for such a construction was deduced and analyzed.
format Article
author Gavrilov, N.M.
Alexeyenko, S.V.
Komarov, D.A.
Netchaev, N.N.
Struckov, J.N.
spellingShingle Gavrilov, N.M.
Alexeyenko, S.V.
Komarov, D.A.
Netchaev, N.N.
Struckov, J.N.
Multi-beam accelerating module calculation
Вопросы атомной науки и техники
author_facet Gavrilov, N.M.
Alexeyenko, S.V.
Komarov, D.A.
Netchaev, N.N.
Struckov, J.N.
author_sort Gavrilov, N.M.
title Multi-beam accelerating module calculation
title_short Multi-beam accelerating module calculation
title_full Multi-beam accelerating module calculation
title_fullStr Multi-beam accelerating module calculation
title_full_unstemmed Multi-beam accelerating module calculation
title_sort multi-beam accelerating module calculation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/81530
citation_txt Multi-beam accelerating module calculation / N.M. Gavrilov, S.V. Alexeyenko, D.A. Komarov, N.N. Netchaev, J.N. Struckov // Вопросы атомной науки и техники. — 1999. — № 4. — С. 52-53. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gavrilovnm multibeamacceleratingmodulecalculation
AT alexeyenkosv multibeamacceleratingmodulecalculation
AT komarovda multibeamacceleratingmodulecalculation
AT netchaevnn multibeamacceleratingmodulecalculation
AT struckovjn multibeamacceleratingmodulecalculation
first_indexed 2025-07-06T06:32:47Z
last_indexed 2025-07-06T06:32:47Z
_version_ 1836878211529572352
fulltext MULTI-BEAM ACCELERATING MODULE CALCULATION N.M. Gavrilov, S.V. Alexeyenko, D.A. Komarov, N.N. Netchaev, J.N. Struckov MIPhI, Moscow, Russia INTRODUCTION As has been pointed in [1], a multi-beam accelerating cavity with drift tubes is suggested to be used in a linac for the purpose of overcoming limitations on the mean current. The multi-beam accelerating cavity containing a cylindrical screen 1 with end flanges 2 is shown in Fig. 1. Current conducting rings 3 are set inside the screen perpendicularly to its axis. Drift tubes 4 with integral constant magnet focussing quadrupoles are uniformly distributed along the ring circumference. Each ring is attached to the screen inner surface by means of two diametrically placed supports 5 in such a way that supports of neighbouring rings are mutually perpendicular. At the operational mode the resonant elements (ring 3 with supports 5) are exited so that the oscillation phase is opposite. In this paper the dispersion equation for such a structure was deduced and analyzed. DISPERSION EQUATION The calculations have been carried out under the following assumptions. The structure geometry is approximated as shown in Fig. 2. The drift tubes and the cavity body are assumed to be ideally conducting. The structure length is infinitely long. Only E and H modes can be exited in the structure that follows from the module geometry. Let us divide the structure into several regions. The complete mathematical modeling of the electromagnetic wave propagation requires some factors to be specifically accounted for. Among them there are the boundary conditions on the conductor surface (its geometrical configuration), the conditions on the boundaries dividing the regions, the two-dimensional periodicity. Taking into account these requirements Helmholtz equations were solved for each region with corresponding boundary conditions. Thus, for the region 1 we have: 02 =+∆ I z I z EkE , (1) 0),,( =zE I z ϕη , (2) ),(),,( zfzRE I z ϕϕ = , (3) where the function f(ϕ,z) is given by     =−∈ −∈ −+∈ = ,...2,1,0},),({);,,( };{);,,( })1(;{,0 ),( νννϕ ν θθν θϕϕ θθνν θϕ ϕ TgTzzRE zREzf IV z т II z т (4) It should be noted that E-modes are considered. Here Laplacians are expressed in a cylindrical coordinate system, its center being at the module axis. The solution of Eq. (1) is represented as a series of own functions. The required dispersion equation is obtained by means of using expressions of magnetic field ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4. Серия: Ядерно-физические исследования (35), с. 52-54. 52 strength components and determination of series coefficients Aik. For the purpose of analysis it seems to be convenient to consider the harmonic (0,0) for which the dispersion equation can be written as ( ) ( ) ( )         +        ++′ ΘΘ ∫ ∫ ∫ ∫ Θ Θ−Θ Θ Θ L L Tr G zRudzdzaRuzaRK LT 0 00 0 0000 ,,,,,,11 ϕϕϕϕξ ( ) ( ) ( ) ( ) +             ++′ Θ + ∫ ∫ Θ Θ dzdzRzRudzdzaRuzaRK L G L mlml T ϕϕνϕϕϕϕξ ,,,,,,,,1 0000 0 00 ( ) ( ) ( )     +Γ    +Γ+ Θ + ∫ ∫ Θ zRdzdzaRzaRK g T L ,,,,,,1 00 0 0000 ϕϕϕϕξ ( ) ( ) ( ) ( ) =         Γ    +Γ+ Θ + ∫ ∫ Θ dzdzRzRdzdzaRzaRK g T L l ϕϕνϕϕϕϕξ ,,,,,,,,1 0000 0 0000 ( ) ( ) ( )         +′        +′+′ ΘΘ = ∫ ∫ ∫ ∫ Θ Θ Θ Θ L L Tr G zRudzdzaRuzaRK LT 0 00 0 0000 ,,,,,,11 ϕϕϕϕξ ( ) ( ) ( ) ( ) +′     ′         +′+′ Θ + ∫ ∫ Θ Θ dzdzRzRudzdzaRuzaRK L G L T ϕϕνϕϕϕϕξ ,,,,,,,,1 0000 0 0000 ( ) ( ) ( )     +Γ ′    +Γ ′+ Θ + ∫ ∫ Θ zRdzdzaRzaRK g T L ,,,,,,1 00 0 0000 ϕϕϕϕξ ( ) ( ) ( ) ( )     ′     Γ ′    +Γ ′+′ Θ + ∫ ∫ Θ dzdzRzRdzdzaRzaRK g T L ϕϕνϕϕϕϕξ ,,,,,,,,1 0000 0 0000 (5) where the functions ξ, u, Г, v – are taken to be Bessel and Neumann functions, such as (6). if ij ij ij ij exI cI cK xK −         − )( )( )( )( , (6) That equation was solved graphically (Fig 3, Table 1) for λ=10 cm. For any module geometry chosen in advance (Q, Qт, L, g) such a graph makes it possible to determine the required diameter of drift tubes and to analyze the dynamics of its variation with changing β: 2 0 2 2     − = β λ πk consta , (7) where the const is defined by graph (Fig. 3). Table 1. νa Lgт θθ 1 2 3 0,5 5,513 1,508 0,811 1,0 4,742 2,112 0,813 1,5 6,803 1,834 0,605 2,0 9,610 2,122 0,523 Fig. 3. The parameters are: 1 – R/a=1.25, a/η=1, b/a=4: 2 — R/a=1.5, a/η=1.25, b/a=5: 3 — R/a=2.0, a/η=1.5, b/a=6. It is of interest to note that in the limiting case when 1→тQQ Eq. (5) can be written as 1 )}()]([)()]([{ )]([ )}()]([)()]([{ )]([ 00000 11111 2 = +−++ +−++ RKaRKRIaRIaRK RIaRIRKaRKaRK ννννν νννννξ (8) ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4. Серия: Ядерно-физические исследования (35), с. 52-54. 52 Eq. (8) is similar to that obtained by P. Alliot for such a structure [2]. CONCLUSION The correlation of geometrical parameters of the structure was demonstrated in this work. In addition, recommendations are given for the determination of the drift tube diameter for cases of given geometry and dynamics. The limiting case 1→тQQ was investigated. The obtained results could be used in the development of accelerators. REFERENCE 1. Gavrilov N.M., Minaev S.A., Shalnov A.V. High current accelerator of ions. Application for patent №92-007144/21-052566 18.11.92. 2. Tikhonov A.N., Samarsky A.S. Equations of mathematical physics. Nauka, Moscow, 1972 (in Russian). 3. Milovanov O.S., Sobenin N.P. Microwave engineering. Atomizdat, Moscow, 1981 (in Russian). 4. Elliot R.S. Azimuthal surface waves on circular cylinders.-Journal of applied physics/ April 1955, vol.26, N.4. 5. Silin R.A., Sazonov V.P. Slow-wave systems. Sovetskoye radio, Moscow, 1966 (in Russian). 6. Sivukhin N.A. Electrodynamics of periodical structures. Sovetskoye radio, Moscow, 1987 (in Russian). ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4. Серия: Ядерно-физические исследования (35), с. 52-54. 5