Relativistic electron bunch excitation of wake fields in magnеtoactive plasma

We have been demonstrated that a multiple excess of the accelerated bunch energy εmax over the energy of the exciting. REB is possible in a magnetoactive plasma at a certain relationship between the parameters of the “plasmabunch-magnetic field” system owing to a hybrid volume-surface character of R...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автори: Balakirev, V.A., Karas, V.I., Karas, I.V., Sotnikov, G.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2000
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81620
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Relativistic electron bunch excitation of wake fields in magnеtoactive plasma / V.A. Balakirev, V.I.Karas`, I.V. Karas`, G.V. Sotnikov // Вопросы атомной науки и техники. — 2000. — № 1. — С. 113-116. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81620
record_format dspace
spelling irk-123456789-816202015-05-19T03:02:40Z Relativistic electron bunch excitation of wake fields in magnеtoactive plasma Balakirev, V.A. Karas, V.I. Karas, I.V. Sotnikov, G.V. Новые мeтoды ускорения заряженных частиц We have been demonstrated that a multiple excess of the accelerated bunch energy εmax over the energy of the exciting. REB is possible in a magnetoactive plasma at a certain relationship between the parameters of the “plasmabunch-magnetic field” system owing to a hybrid volume-surface character of REB-excited wake fields, even without using the REBs contoured in the longitudinal direction. 2000 Article Relativistic electron bunch excitation of wake fields in magnеtoactive plasma / V.A. Balakirev, V.I.Karas`, I.V. Karas`, G.V. Sotnikov // Вопросы атомной науки и техники. — 2000. — № 1. — С. 113-116. — Бібліогр.: 10 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/81620 533.9 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые мeтoды ускорения заряженных частиц
Новые мeтoды ускорения заряженных частиц
spellingShingle Новые мeтoды ускорения заряженных частиц
Новые мeтoды ускорения заряженных частиц
Balakirev, V.A.
Karas, V.I.
Karas, I.V.
Sotnikov, G.V.
Relativistic electron bunch excitation of wake fields in magnеtoactive plasma
Вопросы атомной науки и техники
description We have been demonstrated that a multiple excess of the accelerated bunch energy εmax over the energy of the exciting. REB is possible in a magnetoactive plasma at a certain relationship between the parameters of the “plasmabunch-magnetic field” system owing to a hybrid volume-surface character of REB-excited wake fields, even without using the REBs contoured in the longitudinal direction.
format Article
author Balakirev, V.A.
Karas, V.I.
Karas, I.V.
Sotnikov, G.V.
author_facet Balakirev, V.A.
Karas, V.I.
Karas, I.V.
Sotnikov, G.V.
author_sort Balakirev, V.A.
title Relativistic electron bunch excitation of wake fields in magnеtoactive plasma
title_short Relativistic electron bunch excitation of wake fields in magnеtoactive plasma
title_full Relativistic electron bunch excitation of wake fields in magnеtoactive plasma
title_fullStr Relativistic electron bunch excitation of wake fields in magnеtoactive plasma
title_full_unstemmed Relativistic electron bunch excitation of wake fields in magnеtoactive plasma
title_sort relativistic electron bunch excitation of wake fields in magnеtoactive plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2000
topic_facet Новые мeтoды ускорения заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/81620
citation_txt Relativistic electron bunch excitation of wake fields in magnеtoactive plasma / V.A. Balakirev, V.I.Karas`, I.V. Karas`, G.V. Sotnikov // Вопросы атомной науки и техники. — 2000. — № 1. — С. 113-116. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT balakirevva relativisticelectronbunchexcitationofwakefieldsinmagnetoactiveplasma
AT karasvi relativisticelectronbunchexcitationofwakefieldsinmagnetoactiveplasma
AT karasiv relativisticelectronbunchexcitationofwakefieldsinmagnetoactiveplasma
AT sotnikovgv relativisticelectronbunchexcitationofwakefieldsinmagnetoactiveplasma
first_indexed 2025-07-06T06:49:25Z
last_indexed 2025-07-06T06:49:25Z
_version_ 1836879257969623040
fulltext ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ 2000. №1. Серия: Плазменная электроника и новые методы ускорения (2), с. 113-116. 113 UDK 533.9 RELATIVISTIC ELECTRON BUNCH EXCITATION OF WAKE FIELDS IN A MAGNETOACTIVE PLASMA V.A. Balakirev, V.I. Karas’, I.V. Karas’, G.V. Sotnikov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov 61108, Ukraine,karas@kipt.kharkov.ua We have been demonstrated that a multiple excess of the accelerated bunch energy εmax over the energy of the exciting. REB is possible in a magnetoactive plasma at a certain relationship between the parameters of the “plasma- bunch-magnetic field” system owing to a hybrid volume-surface character of REB-excited wake fields, even without using the REBs contoured in the longitudinal direction. The ideas of using collective fields for acceleration in the plasma and noncom-pen-sated charged beams were stated as early as in 1956 by V.I. Veksler, G.I. Budker and Ya.B. Fainberg [1-3]. The appearance and development of new powerful energy sources such as lasers, high-current relativistic electron beams, superhigh-power microwave generators, gave another impetus to the development of the collective methods of charged particle acceleration. As a result, in 1979 [4] and 1985 [5], there appeared new modifications of the method of charged particle acceleration in a plasma by charge density waves (ref. [3]), where it was proposed that the accelerating fields should be excited by laser pulses and relativistic electron bunches. In our opinion, the excitation of accelerating fields in a plasma by an individual relativistic electron bunch (REB) appears most preferable, because it is nonresonant in character, and therefore, is little sensitive to the longitudinal plasma density inhomogeneity observed in experiment. Besides, to preclude the electromagnetic filamentation slipping of instabilities, etc. [6-9], it is reasonable to use the stabilizing external longitudinal magnetic field [10]. Aside from stabilization, the magnetic field also gives rise to a multitude of new wave branches, and this, as will be shown below, essentially extends the potentialities of the wake-field method of charged particle acceleration. The report presents the results from theoretical studies into the processes of REB excitation of wake fields in a magnetoactive plasma, both the cases of an unbounded plasma and the waveguide with a partial plasma filling. 1. Let us define the wake-field by an axially symmetric REB moving in the magnetoactive plasma along the axis z. We neglect the thermal motion of electrons, and assume ions to be immobile. The REB current density is written as ( ) 0 02ext z r zj I T t e V ψ π   = − −    ! ! ,(1) where I0 is the peak value of the total current of bunch, ψ(r) is the function describing the current distribution in the bunch cross section, the function T describes the longitudinal profile of the bunch (maxT = 1), t is the time, z and r are, respectively, the longitudinal and radial coordinates, V0 is the bunch velocity, ez is the unit vector in the direction of bunch motion and an external magnetic field H0 = H0ez. Formula (1) describes the REB current density in the approximation of assigned motion, i.e., the “rigid” bunch model is used. The function ψ(r) satisfies the condition ( ) 0 1br r rdrψ =∫ , where rb is the maximum radius of REB. We express the electric field E, the magnetic field H and the current density of REB (1) in terms of the Fourier integral, then the set of Maxwell equations takes the form 0 rkE k Hωϕ ω= , ( )0 1 2rkH k E i Eωϕ ω ωϕε ε= + , 0 1 z d rE ik H r dr ωϕ ω= , ( )0 1 2 r r r dH ikH ik E i E dr ω ω ωϕ ωε ε− = − , (2) 0 z r dE ikE ik H dr ω ω ωϕ− = , ( ) ( )0 0 3 21 z Id rH ik E r T r dr cωϕ ωε ψ ω= − , where 0k Vω= , 0k cω= , ( ) ( ) 2 1 2 2 1 pe He i i ω ω ν ε ω ω ν ω + = −  + −  , ( ) 2 2 2 2 pe He Hei ω ω ε ω ω ν ω =  + −  , ( ) 2 3 1 pe i ω ε ω ω ν = − + ,ωpe,ωHe are, respectively, the Langmuir and Larmor frequencies of plasma electrons, v is the effective collision frequency, ϕ is the azimuthal coordinate. The set of first-order differential equations (2) is conveniently reduced to coupled second-order 114 differential equations for longitudinal components of electric and magnetic fields ( ) ( ) 2 2 3 0 1 02 1 1 2 z H z z dHd r p H ikk E r dr dr Ik r T c ω ω ω ε ε ε ε ψ ω ε + = − − − , ( ) ( ) ( ) 2 2 0 1 2 2 0 1 0 0 1 1 2 z E z z dEd r p E ikk H r dr dr k k Ii r T k c ω ω ω ε ε ε ψ ω ε + = + − + ,(3) where 2 2 2 2 21 2 0 1 Hp k kε ε ε −= − , 2 2 2 3 0 3 1 Ep k k εε ε = − . The solution to the nonuniform set of equations has the form ( ) ( ) ( ) ( ) 0 2 1 1 1 0 1 0 0 0 2 2 0 2 , , z I kH i T c AG r r r dr r A G r r ω επ ω ε λ λ ψ λ λ = × −  ×   −   ∫ , ( ) ( ) ( ) ( ) 0 0 3 1 1 0 1 2 2 0 2 0 0 0 1 , , z IE T c k B G r r B G r r r dr r ω π ω ε λ λ λ λ ψ = − × × −  ∫ ,(4) where 2 2 2 1 2 i iA λ λ λ = − , ( )2 2 2 2 2 1 2 i H i i p B λ λ λ λ − = − , λ1,2 are the transverse wave numbers of ordinary and inordinary waves, respectively, and are the roots of the biquadratic equation ( ) 2 4 2 2 2 2 2 2 0 3 1 2 2 0 E H E H p p k k p p ελ λ ε ε   − + − +    + = ,(5) They can be written as: ( )2 22 22 2 2 2 2 1,2 0 3 12 4 E HE H p pp p k k ελ ε ε −  += ± +     , ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 0 0 0 0 0 1 0 0 0 0 , , , i i i i i i H r J r r r G r r H r J r r r λ λ λ λ λ λ  >=  < where J0(λ ir), H0 (1) (λ ir) are the Bessel functions and Hankel functions, respectively. In the ultrarelativistic case, we can put V0 = c. Then, instead of eq.(5) we have ( ) 2 2 0 1,2 3 1 2 3 1 1kλ ε ε ε ε ε  = − ±  . (6) In the frequency range ω2 < ω2 pe the transverse wave numbers are complex. In the limiting case of a strong magnetic field, ω2 He >> ω2 pe, the expression for transverse wave numbers takes the form 2 2 2 1 0k kλ = − , ( )2 2 2 2 0 3k kλ ε= − . For simplicity sake we consider an infinitely thin annular bunch of radius rb ( ) 1T ω = . ( ) ( )b b r r r r δ ψ − = (7) Then, for the electric field on the axis of the system r = 0 we obtain the following integral representation ( ) ( ) ( )10 02 2 0 0 1 exp 2z b QE i t H k r d V ω ω ω γ ∞ ⊥ −∞ =− −∫ , (8) where Q0 is the total charge of bunch, γ0 is the relativistic factor, k⊥ 2 = (k0 2 - k2)ε3. Note that in the frequency range ω < ωpe the bunch emits an electromagnetic field in the radial direction, because k⊥ 2 > 0. The argument of the Hankel function has two branch points ω = ±ωpe - iv/2 lying in the lower half-plane of the complex variable ω. Let us draw a cut along the line of segment connecting the branch points, and close the integration contour in the lower half-plane over the semi-circle of infinite radius. As a result, the initial integral (8) reduces to the integral over the cut shores. Then, using the path-tracing rule for the Hankel function, we obtain the following expression for the longitudinal component of the electric wake field ( ) ( ) 2 1 0 2 2 2 0 0 1 0 exp 1 pe z isQ E i V J s sds τω γ µ− − × = − × −∫ , (9) where 0 pe zt V τ ω   = −    , 0 0 pe br V ω µ γ = . After calculation of the integral we obtain from (9) 115 . 2 0 2 2 2 2 0 0 2 2 2 2 2 2 2 sin cos pe z Q E V ω τ γ τ µ τ µ τ µ τ µ = × +  +  −  × +    − +  (10) At large distances behind the bunch, the wake-wave field decreases as 1/τ. This is due to the fact that the oscillations in the plasma placed in a strong magnetic field have the finite group velocity. The radiation of plasma waves from the near-axis region causes the wake field to decrease in the longitudinal direction. 2. Let us consider the plasma waveguide with a partial plasma filling in the external magnetic field, i.e., the waveguide, where between the plasma boundary r = a and the conducting housing r = b there is a vacuum gap. To derive a dispersion equation of eigenwaves of this plasma wave guide, it is necessary to find the electromagnetic fields in the vacuum gap b<r<a and join them with the plasma fields through the use of boundary conditions on the plasma surface. The boundary conditions are standard, i.e., the continuity of electromagnetic-field tangential components. As a result, we obtain the dispersion equation, which can be conveniently written as a determinant Det 0A = , (11) where the matrix A has the following components 11 1A = , 12 1A = , 13 1A = − , 14 0A = , ( ) ( ) 1 1 21 1 1 0 1 J a A c J a λω λ λ = Γ , ( ) ( ) 1 2 22 2 2 0 2 J a A c J a λω λ λ = Γ , 23 0A = , 24A cw ω= , 31 1A = Γ , 32 2A = Γ , 33 0A = , ( )34A Q wa= , ( ) ( ) 1 1 41 3 1 0 1 J a A c J a λωε λ λ = , ( ) ( ) 1 2 42 3 2 0 2 J a A c J a λωε λ λ = , ( )43 1A F wa cw ω= − , 44 0A = , where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 1 1 1 1 1 I wa K wb K wa I wb Q wa I wa K wb I wb K wa + = − , ( ) ( ) 1 3 2 2 1 22 0 1 222 1,2 1 3 1 2 1 0 2 2 2 2 2 3 2 0 1 2 4 k k k k k k ε ε ε ε ε ε εε ε ε ε − ×      − − ±             Γ =   − − −   × +        ± −         +        ( ) ( ) 2 1 3 1 2 0 1 222 0 1 3 1 2 1,2 0 1 2 2 2 2 2 2 2 3 2 0 2 4 k k kk k k k ε ε ε ε ε ελ ε ε ε ε ε    + − −             − − −  =  +      − ± −         +     0 0 1 0 0 ( ) ( , ) ; ( ) ( , ) p b p I w r wr wb F I w a wa wb ∆ = ∆ 1 2 2 2 0 3( ) ;pw k k ε= − 2 2 2 0 ;w k k= − 0 0 0 0 0( ) ( ) ( ) ( );I wr K wb I wb K wr∆ = − Character of field distribution in the cross section for the waveguide is determined by the transverse wave numbers. If λ1,22 > 0, then the wave is three-dimensional (volumetric). However, if λ1,22 < 0, then the wave is pertai pertaining to surface. And finally, if λ1,22 are the complex variables, then the wave is hybrid. The boundaries of the region, where λ1,22 become complex, are defined by the inequalities 1 2ω ω ω> > , where ( ) 1,2 1 22 2 4 2 2 2 2 2 2 2 2 4 pe He pe He pe He He kc k c k c ω ω ω ω ω ω ω ω = × + ± + − × + (12) To excite the REB of the hybrid wave, the relativistic factor must satisfy the following condition 0 2 He pe ωγ ω > . (13) The field pattern and the frequency of the hybrid wave being in synchronism with the bunch were found by the numerical methods. 116 We attained the characteristic radial distribution of the longitudinal electric-field component at the following plasma and waveguide parameters: 6.3He pe ω ω = , 23.3pea c ω = , 2.4b a = , 0 4.6γ = . The wake hybrid wave frequency is here equal to 0.35 ωpe. It is shown that for the radius r a = 0.8 the magnitude of the longitudinal electric-field component has a deep maximum corresponding to the energy transformation coefficient ( ) max 0 37z E z r ER E = = = . Note that a great value of the transformation coefficient corresponds to a significant ( ER times) excess of the maximum energy obtained by the accelerated bunch as compared to the energy of the bunch exciting the wake field, because the energy transformation coefficient RE is equal to the ratio of the electric field amplitude accelerating the guided bunch to the electric field amplitude decelerating the bunch that excites the accelerating wake field. So, it has been demonstrated that a multiple excess of the accelerated bunch energy εmax over the energy of the exciting. REB is possible in a magnetoactive plasma at a certain relationship between the parameters of the “plasma-bunch-magnetic field” system owing to a hybrid volume-surface character of REB-excited wake fields, even without using the REBs contoured in the longitudinal direction, namely: ( )2 max 0 1Emc Rε γ= − . (14) References 1. V.I.Veksler //Proc. Symp.CERN, 1956, vol. 1.p. 80. 2. G.I.Budker //Proc. Symp.CERN, 1956, vol. 1, p. 68. 3. Ya.B.Fainberg//Proc. Symp .CERN, 1956, vol. 1, p. 84. 4. T Tajima, J.M. Dawson // Phys. Rev. Lett., 1979, vol. 43,p. 267. 5. Chen P., J.M. Dawson J.M., T Katsouleas., et al. // Phys. Rev. Lett., 1985, vol. 54, p. 693 6. T.Katsouleas // Phys. Rev. A, 1986, vol. 33. p. 2066. 7. R.,Keinigs, M.E.Jones // Phys. Fluids, 1987, vol. 30, # 1, p.252. 8. Ya.B. Fainberg Ya.B. // Plasma Physics Reports, 1997, vol. 23, # 4, p. 251. 9. Ya.B. Fainberg // Plasma Physics Reports, 2000, vol. 26, # 4, p.324. 10. A.Ts.Amatuni., E.V.Sekhposyan., A.G.Khachatryan, and S.S.Elbakyan // Plasma Physics Reports, 1995, vol. 21, # 11, p. 945.