Studies of plasma confinement in GOL-3 multi mirror trap

Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 10¹⁴…10¹⁶ cm⁻³ is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is heated up to 2…4 keV temperature by a high power relativis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Arzhannikov, A., Astrelin, V., Beklemishev, A., Burdakov, A., Burmasov, V., Derevyankin, G., Ivanenko, V., Ivanov, I., Ivantsivsky, M., Kandaurov, I., Konyukhov, V., Kotelnikov, I., Kovenya, V., Kozlinskaya, T., Kuklin, K., Kuznetsov, A., Kuznetsov, S., Lotov, K., Timofeev, I., Makarov, A., Mekler, K., Nikolaev, V., Popov, S., Postupaev, V., Polosatkin, S., Rovenskikh, A., Shoshin, A., Shvab, I., Sinitsky, S., Sulyaev, Yu., Stepanov, V., Trunyov, Yu., Vyacheslavov, L., Zhukov, V., Zubairov, Ed.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/81777
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Studies of plasma confinement in GOL-3 multi mirror trap / A. Arzhannikov, V. Astrelin, A. Beklemishev, A. Burdakov, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed. Zubairov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 47-49. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81777
record_format dspace
spelling irk-123456789-817772015-05-21T03:02:29Z Studies of plasma confinement in GOL-3 multi mirror trap Arzhannikov, A. Astrelin, V. Beklemishev, A. Burdakov, A. Burmasov, V. Derevyankin, G. Ivanenko, V. Ivanov, I. Ivantsivsky, M. Kandaurov, I. Konyukhov, V. Kotelnikov, I. Kovenya, V. Kozlinskaya, T. Kuklin, K. Kuznetsov, A. Kuznetsov, S. Lotov, K. Timofeev, I. Makarov, A. Mekler, K. Nikolaev, V. Popov, S. Postupaev, V. Polosatkin, S. Rovenskikh, A. Shoshin, A. Shvab, I. Sinitsky, S. Sulyaev, Yu. Stepanov, V. Trunyov, Yu. Vyacheslavov, L. Zhukov, V. Zubairov, Ed. Magnetic confinement Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 10¹⁴…10¹⁶ cm⁻³ is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is heated up to 2…4 keV temperature by a high power relativistic electron beam (~1 MeV, ~30 kA, ~8 µs, ~120 kJ) injected through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and confinement are discussed. Представлены недавние результаты экспериментов на установке ГОЛ-3. Плазма с плотностью 10¹⁴…10¹⁶ см⁻³ удерживается в 12-метровом соленоиде, состоящем из 55 ячеек с пробочным отношением Bmax/Bmin=4.8/3.2 Тл. Плазма нагревается мощным релятивистским электронным пучком (~1 МэВ, ~30 кА, ~8 мкс, ~120 кДж) до температуры 2…4 кэВ. Обсуждаются механизм быстрого нагрева ионов, вопросы устойчивости и удержания плазмы. Представлено недавні результати експериментів на установці ГОЛ-3. Плазма з густиною 10¹⁴…10¹⁶ см⁻³ утримується в 12-метровому соленоїді, який складається з 55 осередків із пробковим відношенням Bmax/Bmin=4.8/3.2Тл. Плазма нагрівається могутнім релятивістським електронним пучком (~1 МеВ, ~30 кА, ~8 мкс, ~120 кДж) до температури 2...4 кеВ. Обговорюються механізм швидкого нагрівання іонів, питання стійкості й утримання плазми. 2006 Article Studies of plasma confinement in GOL-3 multi mirror trap / A. Arzhannikov, V. Astrelin, A. Beklemishev, A. Burdakov, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed. Zubairov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 47-49. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.55.Jd http://dspace.nbuv.gov.ua/handle/123456789/81777 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Arzhannikov, A.
Astrelin, V.
Beklemishev, A.
Burdakov, A.
Burmasov, V.
Derevyankin, G.
Ivanenko, V.
Ivanov, I.
Ivantsivsky, M.
Kandaurov, I.
Konyukhov, V.
Kotelnikov, I.
Kovenya, V.
Kozlinskaya, T.
Kuklin, K.
Kuznetsov, A.
Kuznetsov, S.
Lotov, K.
Timofeev, I.
Makarov, A.
Mekler, K.
Nikolaev, V.
Popov, S.
Postupaev, V.
Polosatkin, S.
Rovenskikh, A.
Shoshin, A.
Shvab, I.
Sinitsky, S.
Sulyaev, Yu.
Stepanov, V.
Trunyov, Yu.
Vyacheslavov, L.
Zhukov, V.
Zubairov, Ed.
Studies of plasma confinement in GOL-3 multi mirror trap
Вопросы атомной науки и техники
description Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 10¹⁴…10¹⁶ cm⁻³ is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is heated up to 2…4 keV temperature by a high power relativistic electron beam (~1 MeV, ~30 kA, ~8 µs, ~120 kJ) injected through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and confinement are discussed.
format Article
author Arzhannikov, A.
Astrelin, V.
Beklemishev, A.
Burdakov, A.
Burmasov, V.
Derevyankin, G.
Ivanenko, V.
Ivanov, I.
Ivantsivsky, M.
Kandaurov, I.
Konyukhov, V.
Kotelnikov, I.
Kovenya, V.
Kozlinskaya, T.
Kuklin, K.
Kuznetsov, A.
Kuznetsov, S.
Lotov, K.
Timofeev, I.
Makarov, A.
Mekler, K.
Nikolaev, V.
Popov, S.
Postupaev, V.
Polosatkin, S.
Rovenskikh, A.
Shoshin, A.
Shvab, I.
Sinitsky, S.
Sulyaev, Yu.
Stepanov, V.
Trunyov, Yu.
Vyacheslavov, L.
Zhukov, V.
Zubairov, Ed.
author_facet Arzhannikov, A.
Astrelin, V.
Beklemishev, A.
Burdakov, A.
Burmasov, V.
Derevyankin, G.
Ivanenko, V.
Ivanov, I.
Ivantsivsky, M.
Kandaurov, I.
Konyukhov, V.
Kotelnikov, I.
Kovenya, V.
Kozlinskaya, T.
Kuklin, K.
Kuznetsov, A.
Kuznetsov, S.
Lotov, K.
Timofeev, I.
Makarov, A.
Mekler, K.
Nikolaev, V.
Popov, S.
Postupaev, V.
Polosatkin, S.
Rovenskikh, A.
Shoshin, A.
Shvab, I.
Sinitsky, S.
Sulyaev, Yu.
Stepanov, V.
Trunyov, Yu.
Vyacheslavov, L.
Zhukov, V.
Zubairov, Ed.
author_sort Arzhannikov, A.
title Studies of plasma confinement in GOL-3 multi mirror trap
title_short Studies of plasma confinement in GOL-3 multi mirror trap
title_full Studies of plasma confinement in GOL-3 multi mirror trap
title_fullStr Studies of plasma confinement in GOL-3 multi mirror trap
title_full_unstemmed Studies of plasma confinement in GOL-3 multi mirror trap
title_sort studies of plasma confinement in gol-3 multi mirror trap
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/81777
citation_txt Studies of plasma confinement in GOL-3 multi mirror trap / A. Arzhannikov, V. Astrelin, A. Beklemishev, A. Burdakov, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed. Zubairov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 47-49. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT arzhannikova studiesofplasmaconfinementingol3multimirrortrap
AT astrelinv studiesofplasmaconfinementingol3multimirrortrap
AT beklemisheva studiesofplasmaconfinementingol3multimirrortrap
AT burdakova studiesofplasmaconfinementingol3multimirrortrap
AT burmasovv studiesofplasmaconfinementingol3multimirrortrap
AT derevyanking studiesofplasmaconfinementingol3multimirrortrap
AT ivanenkov studiesofplasmaconfinementingol3multimirrortrap
AT ivanovi studiesofplasmaconfinementingol3multimirrortrap
AT ivantsivskym studiesofplasmaconfinementingol3multimirrortrap
AT kandaurovi studiesofplasmaconfinementingol3multimirrortrap
AT konyukhovv studiesofplasmaconfinementingol3multimirrortrap
AT kotelnikovi studiesofplasmaconfinementingol3multimirrortrap
AT kovenyav studiesofplasmaconfinementingol3multimirrortrap
AT kozlinskayat studiesofplasmaconfinementingol3multimirrortrap
AT kuklink studiesofplasmaconfinementingol3multimirrortrap
AT kuznetsova studiesofplasmaconfinementingol3multimirrortrap
AT kuznetsovs studiesofplasmaconfinementingol3multimirrortrap
AT lotovk studiesofplasmaconfinementingol3multimirrortrap
AT timofeevi studiesofplasmaconfinementingol3multimirrortrap
AT makarova studiesofplasmaconfinementingol3multimirrortrap
AT meklerk studiesofplasmaconfinementingol3multimirrortrap
AT nikolaevv studiesofplasmaconfinementingol3multimirrortrap
AT popovs studiesofplasmaconfinementingol3multimirrortrap
AT postupaevv studiesofplasmaconfinementingol3multimirrortrap
AT polosatkins studiesofplasmaconfinementingol3multimirrortrap
AT rovenskikha studiesofplasmaconfinementingol3multimirrortrap
AT shoshina studiesofplasmaconfinementingol3multimirrortrap
AT shvabi studiesofplasmaconfinementingol3multimirrortrap
AT sinitskys studiesofplasmaconfinementingol3multimirrortrap
AT sulyaevyu studiesofplasmaconfinementingol3multimirrortrap
AT stepanovv studiesofplasmaconfinementingol3multimirrortrap
AT trunyovyu studiesofplasmaconfinementingol3multimirrortrap
AT vyacheslavovl studiesofplasmaconfinementingol3multimirrortrap
AT zhukovv studiesofplasmaconfinementingol3multimirrortrap
AT zubairoved studiesofplasmaconfinementingol3multimirrortrap
first_indexed 2025-07-06T07:14:18Z
last_indexed 2025-07-06T07:14:18Z
_version_ 1836880823929798656
fulltext STUDIES OF PLASMA CONFINEMENT IN GOL-3 MULTI MIRROR TRAP A. Arzhannikov1, V. Astrelin1, A. Beklemishev1, A. Burdakov1, V. Burmasov1, G. Derevyankin1, V. Ivanenko1, I. Ivanov1, M.Ivantsivsky1, I.Kandaurov1, V. Konyukhov1, I. Kotelnikov1, V. Kovenya2, T. Kozlinskaya2, K. Kuklin3, A. Kuznetsov1, S. Kuznetsov1, K. Lotov1, I. Timofeev1, A. Makarov1, K. Mekler1, V. Nikolaev1, S. Popov1, V. Postupaev1, S. Polosatkin1, A. Rovenskikh1, A. Shoshin1, I. Shvab2, S. Sinitsky1, Yu. Sulyaev1, V. Stepanov1, Yu. Trunyov1, L. Vyacheslavov1, V. Zhukov2, Ed. Zubairov1 1Budker Institute of Nuclear Physics, Novosibirsk, Russia; 2 Institute of Computational Technologies, Novosibirsk, Russia; 3Novosibirsk State University, Novosibirsk, Russia Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 1014…1016 cm-3 is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is heated up to 2…4 keV temperature by a high power relativistic electron beam (~1 MeV, ~30 kA, ~8 µs, ~120 kJ) injected through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and confinement are discussed. PACS: 52.55.Jd 1. INTRODUCTION In multi mirror system [1], if plasma density is high enough, its expansion along the magnetic field becomes diffusion-like due to effective "friction force" between the magnetic field and plasma particles. The final aim of experiments carried out at the GOL-3 (Fig.1) is development of a multi mirror fusion reactor concept [1-3]. Recently analysis of classical theory based on Coulomb collisions was made. Result of estimation of confinement time for typical GOL-3 conditions (mirror ratio k=1.5, ion temperature ~1keV, total device length L=12m) is given in Fig.2. Optimal conditions for confinement corresponds to λi~ l, were λi is mean free path and l is individual mirror cell length. Important remark is the following. Usually in mirror traps plasma microturbulence is exited and it leads to decrease of mean free path and confinement time. Feature of a multi mirror trap in respect to influences of non classical scattering of particles is the improvement of the longitudinal plasma confinement. Problems of Atomic Science and Technology. 2006, № 6. Series: Plasma Physics (12), p. 47-49 47 2. PLASMA HEATING The plasma in multi mirror trap GOL-3 is heated as a result of interaction of high current relativistic electron beam with a dense (~1015 cm-3) plasma. When the beam is injected into the plasma, collective beam–plasma interactions lead to the excitation of Langmuir turbulence. As a result, the energy of the relativistic electron beam is transferred primarily to the plasma electrons. The electron temperature rapidly reaches 2...4 keV at a density of 0.3·1015cm–3 (see Fig.3). To achieve such intense electron heating, it is necessary to suppress longitudinal electron heat conduction toward the system ends, at least, during the heating phase [4]. This λi ~ l τ ~ L VT 0 λi >> l C on fin em en t t im e, m ic ro se co nd s 1012 1013 1014 1015 1016 1017 1018 Density, cm-3 100 200 500 1000 2000 5000 Ti=1keV τ~ 0τ L / l λi ~ l τ ~ L VT 0τ ~ L VT 0 λi >> l C on fin em en t t im e, m ic ro se co nd s 1012 1013 1014 1015 1016 1017 1018 Density, cm-3 100 200 500 1000 2000 5000 Ti=1keV τ~ 0τ L / l   Fig.2. Calculation of confinement time τ on base of classical collisions sheet beam diode U-2 generator of the electron beam solenoid with corrugated magnetic field exit unit      Fig.1. Layout of the GOL-3 facility. 12-meter-long solenoid consists of 55 cells of 22 cm length each with B 0 1000 2000 3000 4000 5000 6000 Ee, eV 1E+010 1E+011 1E+012 1E+013 dn /d E , c m -3 e V -1 Te=3.5±0.14 keV Te=2.1±0.18 keV Te=1.8±0.12 keV   Fig.3. Results of measurements of electron temperature by Thomson scattering Bmax/Bmin=4.8/3.2 T. The plasma heating is provided by a high-power electron beam (~1 MeV, 30 kA, 8 μs) with total energy content of 120…150 kJ phenomenon gives rise to high longitudinal gradients of the electron temperature and plasma pressure during the axially nonuniform plasma heating by a high-current relativistic electron beam. These gradients lead to two kinds of plasma macroscopic motions: local inside each cell and global along the system. Both these motions in a corrugated field lead to the electron energy transfer to ions much faster than the energy transfer due to binary collisions. As a result, ion temperature up to 2 keV at density ~1015 cm-3 is achieved. 48 The mechanism for fast ion heating considered here should lead to the excitation of large-amplitude waves of the plasma density. Such density waves were measured directly by Thomson scattering. The local neutron detectors allow one to trace the plasma evolution over a long time (see Fig. 4). The plasma evolution can be conventionally divided into three stages. In the fluctuation stage, a fraction of the ion component acquires energy (mainly a longitudinal one) due to the effect of fast ion heating in the multi mirror trap. In the second (transient) stage, the hot and cold ions intensively interchange their energy, the plasma temperature equalizes along the trap, and the ion temperature somewhat increases due to the thermalization of the directed energy of the fast ions. The third stage is the confinement of the cooling plasma in the multi mirror trap. 3. PLASMA CONFINEMENT The plasma confinement in GOL-3 facility was studied for the initial density in a range of 3⋅1014-5⋅1015 cm-3. For the analysis of confinement time of plasma the data of all diagnostics were used, here we will consider mainly diamagnetic measurements. The measured dependence of distribution of specific energy in plasma versus distance from an entrance mirror is given in Fig.5. At 15 microseconds after the beam injection the energy deposition has a maximum at distance about 1 meter from an entrance mirror. In this place the peak of intensity of neutron emission is observed, the electron temperature during injection of a beam reaches of 2…4 keV, and ion temperature after an establishment of Maxwellian distributions also has a maximum of 2…4 keV. At large distances from the entrance mirror the temperature decreases to~1keV. At 100 microseconds after the beam injection the energy distribution on length is changes. Sift of maximum of the energy stored in plasma is observed. Slow motion of plasma along the trap because of the pressure gradient is observed. Especially it is appreciable on distances of 1…3 meters from an input mirror where plasma pressure increases. Later (500 microseconds) this process proceeds. From this data also follow, that local confinement time of the plasma depends on coordinate along the axis of the system (see Fig.5.). 1010 109 108 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 time, microseconds N eu tro n flu x, cm -2 s -1 1010 109 108 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 time, microseconds N eu tro n flu x, cm -2 s -1 Fig.4. Time evolution of intensity of neutron emission at 1 m from the entrance mirror Dependence of the global confinement time on initial density is presented in Fig.6. The theoretical dependence of the confinement time on initial density also shown. Apparently there is a significant divergence of prediction of the theory and the experimental results at density below 3·1015 cm-3. At these densities and the temperature the classical mean free path of the particles becomes comparable and even exceeds full length of the trap. In these conditions life time of particles should be of the order of time-of-flight of particles through full length of the system. This is not observed in the experiment. It is natural to assume, that effective ion collision rate considerably exceed the classical one, and due to this the effective mean free path of particles λeff may become about length of a separate cell multi mirror trap l. therefore conditions for the best confinement in multi mirror trap (λeff~ l) may be satisfied. The effective cross section should be at least the order of magnitude higher than classical one. 0.1 1 10 0 0.2 0.4 0.6 0.8 1 1.2 En er gy co nf in em en tt im e, m s Density, 1015 cm-3 0.1 1 10 0 0.2 0.4 0.6 0.8 1 1.2 En er gy co nf in em en tt im e, m s Density, 1015 cm-3 0.1 1 10 0 0.2 0.4 0.6 0.8 1 1.2 En er gy co nf in em en tt im e, m s Density, 1015 cm-3   Fig.6. Energy confinement time vs initial density. Solid line shows prediction of the classical theory 0 100 200 300 400 500 600 700 800 900 1000 1100 Distance from the input mirror, cm 0 1 2 3 4 5 6 sp ec ifi c en er gy ,J /c m PL5804 Q=1.75 kJ, t=15 microseconds Q=1.75 kJ, t=100 microseconds Q=0.97 kJ, t=500 microseconds   Fig.5. Axial distribution of plasma energy at different time moment We conclude that scattering of plasma ions in the trap is determined by scattering of particles on turbulence. Now the nature of occurrence of micro fields in the plasma, resulting in improvement of confinement, is not clear. One of the possible mechanisms of improvement of longitudinal confinement is excitation of bounce oscillations near ends of the trap. Anyway, the fact of improvement of plasma confinement at moderate density is positive from the point of view of prospects of a multi mirror trap as fusion reactor. 4. BOUNCE OSCILLATIONS OF FAST IONS IN SEPARATE CELLS A plasma motion along the corrugated magnetic field leads to excitation of bounce oscillations of fast ions in 5. CONCLUSION some separate cells near ends of the system. Such oscillations result in periodic modulation of flux of DD neutrons, which was measured with a set of compact local detectors - see Fig.7. Period of oscillations agrees well with the predicted period for bounce oscillations l V iT~ω , where VTi is ion thermal velocity. In the experiment a phase shift of neutron emission in separate sell is observed and this observation confirms nature of oscillation. These oscillations make efficient exchange between populations of trapped and transit ions, therefore the plasma confinement in the multi mirror system (which relies on relatively short free path length for ions) improves. The electron temperature reaches 2…4 keV at a density of 0.3·1015 cm–3 during collective beam-plasma interaction. Electron heat conductance is suppressed by three orders of magnitude. Phenomenon of fast ion heating leads to increase of ion temperature up to ~2 keV at a density of ~1015 cm–3. Best energy confinement time (~1 ms ) corresponds to theory but it is achieved at lower density, than it was predicted. This fact is beneficial for multi mirror trap based fusion reactor concept. New class of plasma oscillations in the cells of multi mirror trap GOL-3 is observed. The oscillations are identified as bounce instability which can decrease the axial losses. 49 ACKNOWLEDGEMENTS The work was partially supported by RFBR 05-01-00146, 05-02-17160, 04-01-00244 and 05-08-33664 projects. REFERENCES 1. G.I. Budker et al. Influence of Corrugated Magnetic Field to Expansion and Cooling of Dense Plasma // JETP Letters. 1971, v.14, p. 320 (in Russian). 2. D.D. Ryutov. Open-Ended Traps // Sov. Phys. Uspekhi. 1988, v. 31, p. 301. 3. V.S. Koidan et al. Progress in multimirror trap GOL-3 // Transactions of Fusion Technology. 2005, v. 47, N 1T, p. 35. 4. V.T. Astrelin, A.V. Burdakov, V.V. Postupaev. Generation of Ion-Acoustic Waves and Suppression of Heat Transport during Plasma Heating by an Electron Beam// Plasma Phys. Rep. 1998, v.24, p.414. ИЗУЧЕНИЕ УДЕРЖАНИЯ ПЛАЗМЫ В МНОГОПРОБОЧНОЙ ЛОВУШКЕ ГОЛ-3 А.В. Аржанников, В.Т. Астрелин, А.Д. Беклемишев, А.В. Бурдаков, В.С. Бурмасов, Г.Е. Деревянкин, В.Г. Иваненко, И.А. Иванов, М.В. Иванцивский, И.В. Кандауров, В.В. Конюхов, И.А. Котельников, В.М. Ковеня, Т.В. Козлинская, К.Н. Куклин, А.С. Кузнецов, С.А. Кузнецов, К.В. Лотов, И.В. Тимофеев, А.Г. Макаров, К.И. Меклер, В.С. Николаев, С.С. Попов, В.В. Поступаев, С.В. Полосаткин, А.Ф. Ровенских, А.А. Шошин, И.В. Шваб, С.Л. Синицкий, Ю.С. Суляев, В.Д. Степанов, Ю.А. Трунев, Л.Н. Вячеславов, В.П. Жуков, Э.Р. Зубаиров Представлены недавние результаты экспериментов на установке ГОЛ-3. Плазма с плотностью 1014…1016 см-3 удерживается в 12-метровом соленоиде, состоящем из 55 ячеек с пробочным отношением Bmax/Bmin=4.8/3.2 Тл. Плазма нагревается мощным релятивистским электронным пучком (~1 МэВ, ~30 кА, ~8 мкс, ~120 кДж) до температуры 2…4 кэВ. Обсуждаются механизм быстрого нагрева ионов, вопросы устойчивости и удержания плазмы. ВИВЧЕННЯ УТРИМАННЯ ПЛАЗМИ В БАГАТОПРОБКОВІЙ ПАСТЦІ ГОЛ-3 А.В. Аржанніков, В.Т. Астрелін, О.Д. Беклемішев, О.В. Бурдаков, В.С. Бурмасов, Г.Є. Деревянкін, В.Г. Іваненко, І.О. Іванов, М.В. Іванцівський, І.В. Кандауров, В.В. Конюхов, І.О. Котельников, В.М. Ковеня, Т.В. Козлінська, К.М. Куклін, О.С. Кузнєцов, С.О. Кузнєцов, К.В. Лотов, І.В. Тимофєєв, О.Г. Макаров, К.І. Меклер, В.С. Ніколаєв, С.С. Попов, В.В. Поступаєв, С.В. Полосаткін, А.Ф. Ровенських, А.О. Шошин, І.В. Шваб, С.Л. Синицький, Ю.С. Суляєв, В.Д. Степанов, Ю.О. Труньов, Л.М. Вячеславов, В.П. Жуков, Е.Р. Зубаїров Представлено недавні результати експериментів на установці ГОЛ-3. Плазма з густиною 1014…1016см-3 утримується в 12-метровому соленоїді, який складається з 55 осередків із пробковим відношенням Bmax/Bmin=4.8/3.2Тл. Плазма нагрівається могутнім релятивістським електронним пучком (~1 МеВ, ~30 кА, ~8 мкс, ~120 кДж) до температури 2...4 кеВ. Обговорюються механізм швидкого нагрівання іонів, питання стійкості й утримання плазми. 0 20 40 60 80 100 120 14 time, mi oseconds 0 cr 0E+000 4E+009 8E+009 1E+010 2E+010 2E+010 in te ns ity o f n eu tro n em is si on , c m -2 c -1 0E+000 2E+009 4E+009 60 64 68 72 76 80 shot #PL6397 0 20 40 60 80 100 120 14 time, mi oseconds 0 cr 0E+000 4E+009 8E+009 1E+010 2E+010 2E+010 in te ns ity o f n eu tro n em is si on , c m -2 c -1 0E+000 2E+009 4E+009 60 64 68 72 76 80 shot #PL6397   Fig.7. Periodic oscillation of the neutron flux. These oscillations are explained by excitation of bounce oscillations of fast ions in a cell of multi mirror trap We conclude that scattering of plasma ions in the trap is determined by scattering of particles on turbulence. Now the nature of occurrence of micro fields in the plasma, resulting in improvement of confinement, is not clear. One of the possible mechanisms of improvement of longitudinal confinement is excitation of bounce oscillations near ends of the trap. Anyway, the fact of improvement of plasma confinement at moderate density is positive from the point of view of prospects of a multi mirror trap as fusion reactor.