Studies of plasma confinement in GOL-3 multi mirror trap
Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 10¹⁴…10¹⁶ cm⁻³ is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is heated up to 2…4 keV temperature by a high power relativis...
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/81777 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Studies of plasma confinement in GOL-3 multi mirror trap / A. Arzhannikov, V. Astrelin, A. Beklemishev, A. Burdakov, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed. Zubairov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 47-49. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-81777 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-817772015-05-21T03:02:29Z Studies of plasma confinement in GOL-3 multi mirror trap Arzhannikov, A. Astrelin, V. Beklemishev, A. Burdakov, A. Burmasov, V. Derevyankin, G. Ivanenko, V. Ivanov, I. Ivantsivsky, M. Kandaurov, I. Konyukhov, V. Kotelnikov, I. Kovenya, V. Kozlinskaya, T. Kuklin, K. Kuznetsov, A. Kuznetsov, S. Lotov, K. Timofeev, I. Makarov, A. Mekler, K. Nikolaev, V. Popov, S. Postupaev, V. Polosatkin, S. Rovenskikh, A. Shoshin, A. Shvab, I. Sinitsky, S. Sulyaev, Yu. Stepanov, V. Trunyov, Yu. Vyacheslavov, L. Zhukov, V. Zubairov, Ed. Magnetic confinement Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 10¹⁴…10¹⁶ cm⁻³ is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is heated up to 2…4 keV temperature by a high power relativistic electron beam (~1 MeV, ~30 kA, ~8 µs, ~120 kJ) injected through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and confinement are discussed. Представлены недавние результаты экспериментов на установке ГОЛ-3. Плазма с плотностью 10¹⁴…10¹⁶ см⁻³ удерживается в 12-метровом соленоиде, состоящем из 55 ячеек с пробочным отношением Bmax/Bmin=4.8/3.2 Тл. Плазма нагревается мощным релятивистским электронным пучком (~1 МэВ, ~30 кА, ~8 мкс, ~120 кДж) до температуры 2…4 кэВ. Обсуждаются механизм быстрого нагрева ионов, вопросы устойчивости и удержания плазмы. Представлено недавні результати експериментів на установці ГОЛ-3. Плазма з густиною 10¹⁴…10¹⁶ см⁻³ утримується в 12-метровому соленоїді, який складається з 55 осередків із пробковим відношенням Bmax/Bmin=4.8/3.2Тл. Плазма нагрівається могутнім релятивістським електронним пучком (~1 МеВ, ~30 кА, ~8 мкс, ~120 кДж) до температури 2...4 кеВ. Обговорюються механізм швидкого нагрівання іонів, питання стійкості й утримання плазми. 2006 Article Studies of plasma confinement in GOL-3 multi mirror trap / A. Arzhannikov, V. Astrelin, A. Beklemishev, A. Burdakov, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed. Zubairov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 47-49. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.55.Jd http://dspace.nbuv.gov.ua/handle/123456789/81777 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Magnetic confinement Magnetic confinement |
spellingShingle |
Magnetic confinement Magnetic confinement Arzhannikov, A. Astrelin, V. Beklemishev, A. Burdakov, A. Burmasov, V. Derevyankin, G. Ivanenko, V. Ivanov, I. Ivantsivsky, M. Kandaurov, I. Konyukhov, V. Kotelnikov, I. Kovenya, V. Kozlinskaya, T. Kuklin, K. Kuznetsov, A. Kuznetsov, S. Lotov, K. Timofeev, I. Makarov, A. Mekler, K. Nikolaev, V. Popov, S. Postupaev, V. Polosatkin, S. Rovenskikh, A. Shoshin, A. Shvab, I. Sinitsky, S. Sulyaev, Yu. Stepanov, V. Trunyov, Yu. Vyacheslavov, L. Zhukov, V. Zubairov, Ed. Studies of plasma confinement in GOL-3 multi mirror trap Вопросы атомной науки и техники |
description |
Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 10¹⁴…10¹⁶ cm⁻³ is confined
in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is
heated up to 2…4 keV temperature by a high power relativistic electron beam (~1 MeV, ~30 kA, ~8 µs, ~120 kJ) injected
through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and
confinement are discussed. |
format |
Article |
author |
Arzhannikov, A. Astrelin, V. Beklemishev, A. Burdakov, A. Burmasov, V. Derevyankin, G. Ivanenko, V. Ivanov, I. Ivantsivsky, M. Kandaurov, I. Konyukhov, V. Kotelnikov, I. Kovenya, V. Kozlinskaya, T. Kuklin, K. Kuznetsov, A. Kuznetsov, S. Lotov, K. Timofeev, I. Makarov, A. Mekler, K. Nikolaev, V. Popov, S. Postupaev, V. Polosatkin, S. Rovenskikh, A. Shoshin, A. Shvab, I. Sinitsky, S. Sulyaev, Yu. Stepanov, V. Trunyov, Yu. Vyacheslavov, L. Zhukov, V. Zubairov, Ed. |
author_facet |
Arzhannikov, A. Astrelin, V. Beklemishev, A. Burdakov, A. Burmasov, V. Derevyankin, G. Ivanenko, V. Ivanov, I. Ivantsivsky, M. Kandaurov, I. Konyukhov, V. Kotelnikov, I. Kovenya, V. Kozlinskaya, T. Kuklin, K. Kuznetsov, A. Kuznetsov, S. Lotov, K. Timofeev, I. Makarov, A. Mekler, K. Nikolaev, V. Popov, S. Postupaev, V. Polosatkin, S. Rovenskikh, A. Shoshin, A. Shvab, I. Sinitsky, S. Sulyaev, Yu. Stepanov, V. Trunyov, Yu. Vyacheslavov, L. Zhukov, V. Zubairov, Ed. |
author_sort |
Arzhannikov, A. |
title |
Studies of plasma confinement in GOL-3 multi mirror trap |
title_short |
Studies of plasma confinement in GOL-3 multi mirror trap |
title_full |
Studies of plasma confinement in GOL-3 multi mirror trap |
title_fullStr |
Studies of plasma confinement in GOL-3 multi mirror trap |
title_full_unstemmed |
Studies of plasma confinement in GOL-3 multi mirror trap |
title_sort |
studies of plasma confinement in gol-3 multi mirror trap |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Magnetic confinement |
url |
http://dspace.nbuv.gov.ua/handle/123456789/81777 |
citation_txt |
Studies of plasma confinement in GOL-3 multi mirror trap / A. Arzhannikov, V. Astrelin, A. Beklemishev, A. Burdakov, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed. Zubairov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 47-49. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT arzhannikova studiesofplasmaconfinementingol3multimirrortrap AT astrelinv studiesofplasmaconfinementingol3multimirrortrap AT beklemisheva studiesofplasmaconfinementingol3multimirrortrap AT burdakova studiesofplasmaconfinementingol3multimirrortrap AT burmasovv studiesofplasmaconfinementingol3multimirrortrap AT derevyanking studiesofplasmaconfinementingol3multimirrortrap AT ivanenkov studiesofplasmaconfinementingol3multimirrortrap AT ivanovi studiesofplasmaconfinementingol3multimirrortrap AT ivantsivskym studiesofplasmaconfinementingol3multimirrortrap AT kandaurovi studiesofplasmaconfinementingol3multimirrortrap AT konyukhovv studiesofplasmaconfinementingol3multimirrortrap AT kotelnikovi studiesofplasmaconfinementingol3multimirrortrap AT kovenyav studiesofplasmaconfinementingol3multimirrortrap AT kozlinskayat studiesofplasmaconfinementingol3multimirrortrap AT kuklink studiesofplasmaconfinementingol3multimirrortrap AT kuznetsova studiesofplasmaconfinementingol3multimirrortrap AT kuznetsovs studiesofplasmaconfinementingol3multimirrortrap AT lotovk studiesofplasmaconfinementingol3multimirrortrap AT timofeevi studiesofplasmaconfinementingol3multimirrortrap AT makarova studiesofplasmaconfinementingol3multimirrortrap AT meklerk studiesofplasmaconfinementingol3multimirrortrap AT nikolaevv studiesofplasmaconfinementingol3multimirrortrap AT popovs studiesofplasmaconfinementingol3multimirrortrap AT postupaevv studiesofplasmaconfinementingol3multimirrortrap AT polosatkins studiesofplasmaconfinementingol3multimirrortrap AT rovenskikha studiesofplasmaconfinementingol3multimirrortrap AT shoshina studiesofplasmaconfinementingol3multimirrortrap AT shvabi studiesofplasmaconfinementingol3multimirrortrap AT sinitskys studiesofplasmaconfinementingol3multimirrortrap AT sulyaevyu studiesofplasmaconfinementingol3multimirrortrap AT stepanovv studiesofplasmaconfinementingol3multimirrortrap AT trunyovyu studiesofplasmaconfinementingol3multimirrortrap AT vyacheslavovl studiesofplasmaconfinementingol3multimirrortrap AT zhukovv studiesofplasmaconfinementingol3multimirrortrap AT zubairoved studiesofplasmaconfinementingol3multimirrortrap |
first_indexed |
2025-07-06T07:14:18Z |
last_indexed |
2025-07-06T07:14:18Z |
_version_ |
1836880823929798656 |
fulltext |
STUDIES OF PLASMA CONFINEMENT IN GOL-3 MULTI MIRROR TRAP
A. Arzhannikov1, V. Astrelin1, A. Beklemishev1, A. Burdakov1, V. Burmasov1, G. Derevyankin1,
V. Ivanenko1, I. Ivanov1, M.Ivantsivsky1, I.Kandaurov1, V. Konyukhov1, I. Kotelnikov1,
V. Kovenya2, T. Kozlinskaya2, K. Kuklin3, A. Kuznetsov1, S. Kuznetsov1, K. Lotov1, I. Timofeev1,
A. Makarov1, K. Mekler1, V. Nikolaev1, S. Popov1, V. Postupaev1, S. Polosatkin1, A. Rovenskikh1,
A. Shoshin1, I. Shvab2, S. Sinitsky1, Yu. Sulyaev1, V. Stepanov1, Yu. Trunyov1, L. Vyacheslavov1,
V. Zhukov2, Ed. Zubairov1
1Budker Institute of Nuclear Physics, Novosibirsk, Russia;
2 Institute of Computational Technologies, Novosibirsk, Russia;
3Novosibirsk State University, Novosibirsk, Russia
Recent results of the experiments at GOL-3 facility are presented. Plasma with a density of 1014…1016 cm-3 is confined
in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma is
heated up to 2…4 keV temperature by a high power relativistic electron beam (~1 MeV, ~30 kA, ~8 µs, ~120 kJ) injected
through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and
confinement are discussed.
PACS: 52.55.Jd
1. INTRODUCTION
In multi mirror system [1], if plasma density is high
enough, its expansion along the magnetic field becomes
diffusion-like due to effective "friction force" between the
magnetic field and plasma particles. The final aim of
experiments carried out at the GOL-3 (Fig.1) is
development of a multi mirror fusion reactor concept [1-3].
Recently analysis of classical theory based on Coulomb
collisions was made. Result of estimation of confinement
time for typical GOL-3 conditions (mirror ratio k=1.5, ion
temperature ~1keV, total device length L=12m) is given in
Fig.2. Optimal conditions for confinement corresponds to
λi~ l, were λi is mean free path and l is individual mirror
cell length. Important remark is the following. Usually in
mirror traps plasma microturbulence is exited and it leads
to decrease of mean free path and confinement time.
Feature of a multi mirror trap in respect to influences of
non classical scattering of particles is the improvement of
the longitudinal plasma confinement.
Problems of Atomic Science and Technology. 2006, № 6. Series: Plasma Physics (12), p. 47-49 47
2. PLASMA HEATING
The plasma in multi mirror trap GOL-3 is heated as a
result of interaction of high current relativistic electron
beam with a dense (~1015 cm-3) plasma. When the beam is
injected into the plasma, collective beam–plasma
interactions lead to the excitation of Langmuir turbulence.
As a result, the energy of the relativistic electron beam is
transferred primarily to the plasma electrons. The electron
temperature rapidly reaches 2...4 keV at a density of
0.3·1015cm–3 (see Fig.3).
To achieve such intense electron heating, it is necessary to
suppress longitudinal electron heat conduction toward the
system ends, at least, during the heating phase [4]. This
λi ~ l
τ ~
L
VT
0
λi >> l
C
on
fin
em
en
t t
im
e,
m
ic
ro
se
co
nd
s
1012 1013 1014 1015 1016 1017 1018
Density, cm-3
100
200
500
1000
2000
5000 Ti=1keV
τ~ 0τ L / l
λi ~ l
τ ~
L
VT
0τ ~
L
VT
0
λi >> l
C
on
fin
em
en
t t
im
e,
m
ic
ro
se
co
nd
s
1012 1013 1014 1015 1016 1017 1018
Density, cm-3
100
200
500
1000
2000
5000 Ti=1keV
τ~ 0τ L / l
Fig.2. Calculation of confinement time τ on base of
classical collisions
sheet beam diode
U-2 generator
of the electron
beam
solenoid with corrugated magnetic field
exit unit
Fig.1. Layout of the GOL-3 facility. 12-meter-long
solenoid consists of 55 cells of 22 cm length each with
B
0 1000 2000 3000 4000 5000 6000
Ee, eV
1E+010
1E+011
1E+012
1E+013
dn
/d
E
, c
m
-3
e
V
-1
Te=3.5±0.14 keV
Te=2.1±0.18 keV
Te=1.8±0.12 keV
Fig.3. Results of measurements of electron
temperature by Thomson scattering
Bmax/Bmin=4.8/3.2 T. The plasma heating is provided by a
high-power electron beam (~1 MeV, 30 kA, 8 μs) with
total energy content of 120…150 kJ
phenomenon gives rise to high longitudinal gradients of
the electron temperature and plasma pressure during the
axially nonuniform plasma heating by a high-current
relativistic electron beam. These gradients lead to two
kinds of plasma macroscopic motions: local inside each
cell and global along the system. Both these motions in a
corrugated field lead to the electron energy transfer to ions
much faster than the energy transfer due to binary
collisions. As a result, ion temperature up to 2 keV at
density ~1015 cm-3 is achieved.
48
The mechanism for fast ion heating considered here
should lead to the excitation of large-amplitude waves of the
plasma density. Such density waves were measured directly
by Thomson scattering. The local neutron detectors allow one
to trace the plasma evolution over a long time (see Fig. 4).
The plasma evolution can be conventionally divided into
three stages. In the fluctuation stage, a fraction of the ion
component acquires energy (mainly a longitudinal one) due
to the effect of fast ion heating in the multi mirror trap. In the
second (transient) stage, the hot and cold ions intensively
interchange their energy, the plasma temperature equalizes
along the trap, and the ion temperature somewhat increases
due to the thermalization of the directed energy of the fast
ions. The third stage is the confinement of the cooling plasma
in the multi mirror trap.
3. PLASMA CONFINEMENT
The plasma confinement in GOL-3 facility was
studied for the initial density in a range of
3⋅1014-5⋅1015 cm-3. For the analysis of confinement time of
plasma the data of all diagnostics were used, here we will
consider mainly diamagnetic measurements.
The measured dependence of distribution of specific
energy in plasma versus distance from an entrance mirror
is given in Fig.5. At 15 microseconds after the beam
injection the energy deposition has a maximum at distance
about 1 meter from an entrance mirror. In this place the
peak of intensity of neutron emission is observed, the
electron temperature during injection of a beam reaches of
2…4 keV, and ion temperature after an establishment of
Maxwellian distributions also has a maximum of 2…4 keV.
At large distances from the entrance mirror the temperature
decreases to~1keV.
At 100 microseconds after the beam injection the
energy distribution on length is changes. Sift of maximum
of the energy stored in plasma is observed. Slow motion of
plasma along the trap because of the pressure gradient is
observed. Especially it is appreciable on distances of 1…3
meters from an input mirror where plasma pressure
increases. Later (500 microseconds) this process proceeds.
From this data also follow, that local confinement time of
the plasma depends on coordinate along the axis of the
system (see Fig.5.).
1010
109
108
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
time, microseconds
N
eu
tro
n
flu
x,
cm
-2
s
-1
1010
109
108
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
time, microseconds
N
eu
tro
n
flu
x,
cm
-2
s
-1
Fig.4. Time evolution of intensity of neutron emission
at 1 m from the entrance mirror
Dependence of the global confinement time on initial
density is presented in Fig.6. The theoretical dependence
of the confinement time on initial density also shown.
Apparently there is a significant divergence of prediction
of the theory and the experimental results at density below
3·1015 cm-3. At these densities and the temperature the
classical mean free path of the particles becomes
comparable and even exceeds full length of the trap. In
these conditions life time of particles should be of the order
of time-of-flight of particles through full length of the
system. This is not observed in the experiment. It is natural
to assume, that effective ion collision rate considerably
exceed the classical one, and due to this the effective mean
free path of particles λeff may become about length of a
separate cell multi mirror trap l. therefore conditions for
the best confinement in multi mirror trap (λeff~ l) may be
satisfied. The effective cross section should be at least the
order of magnitude higher than classical one.
0.1 1 10
0
0.2
0.4
0.6
0.8
1
1.2
En
er
gy
co
nf
in
em
en
tt
im
e,
m
s
Density, 1015 cm-3
0.1 1 10
0
0.2
0.4
0.6
0.8
1
1.2
En
er
gy
co
nf
in
em
en
tt
im
e,
m
s
Density, 1015 cm-3
0.1 1 10
0
0.2
0.4
0.6
0.8
1
1.2
En
er
gy
co
nf
in
em
en
tt
im
e,
m
s
Density, 1015 cm-3
Fig.6. Energy confinement time vs initial density. Solid
line shows prediction of the classical theory
0 100 200 300 400 500 600 700 800 900 1000 1100
Distance from the input mirror, cm
0
1
2
3
4
5
6
sp
ec
ifi
c
en
er
gy
,J
/c
m
PL5804
Q=1.75 kJ, t=15 microseconds
Q=1.75 kJ, t=100 microseconds
Q=0.97 kJ, t=500 microseconds
Fig.5. Axial distribution of plasma energy at different
time moment
We conclude that scattering of plasma ions in the trap is
determined by scattering of particles on turbulence. Now
the nature of occurrence of micro fields in the plasma,
resulting in improvement of confinement, is not clear. One
of the possible mechanisms of improvement of
longitudinal confinement is excitation of bounce
oscillations near ends of the trap. Anyway, the fact of
improvement of plasma confinement at moderate density
is positive from the point of view of prospects of a multi
mirror trap as fusion reactor.
4. BOUNCE OSCILLATIONS OF FAST IONS
IN SEPARATE CELLS
A plasma motion along the corrugated magnetic field
leads to excitation of bounce oscillations of fast ions in
5. CONCLUSION some separate cells near ends of the system. Such
oscillations result in periodic modulation of flux of DD
neutrons, which was measured with a set of compact local
detectors - see Fig.7. Period of oscillations agrees well
with the predicted period for bounce oscillations
l
V
iT~ω ,
where VTi is ion thermal velocity. In the experiment a phase
shift of neutron emission in separate sell is observed and
this observation confirms nature of oscillation. These
oscillations make efficient exchange between populations
of trapped and transit ions, therefore the plasma
confinement in the multi mirror system (which relies on
relatively short free path length for ions) improves.
The electron temperature reaches 2…4 keV at a density of
0.3·1015 cm–3 during collective beam-plasma interaction.
Electron heat conductance is suppressed by three orders of
magnitude.
Phenomenon of fast ion heating leads to increase of ion
temperature up to ~2 keV at a density of ~1015 cm–3.
Best energy confinement time (~1 ms ) corresponds to
theory but it is achieved at lower density, than it was
predicted. This fact is beneficial for multi mirror trap based
fusion reactor concept.
New class of plasma oscillations in the cells of multi
mirror trap GOL-3 is observed. The oscillations are
identified as bounce instability which can decrease the
axial losses.
49
ACKNOWLEDGEMENTS
The work was partially supported by RFBR 05-01-00146,
05-02-17160, 04-01-00244 and 05-08-33664 projects.
REFERENCES
1. G.I. Budker et al. Influence of Corrugated Magnetic
Field to Expansion and Cooling of Dense Plasma //
JETP Letters. 1971, v.14, p. 320 (in Russian).
2. D.D. Ryutov. Open-Ended Traps // Sov. Phys.
Uspekhi. 1988, v. 31, p. 301.
3. V.S. Koidan et al. Progress in multimirror trap GOL-3
// Transactions of Fusion Technology. 2005, v. 47,
N 1T, p. 35.
4. V.T. Astrelin, A.V. Burdakov, V.V. Postupaev.
Generation of Ion-Acoustic Waves and Suppression
of Heat Transport during Plasma Heating by an
Electron Beam// Plasma Phys. Rep. 1998, v.24, p.414.
ИЗУЧЕНИЕ УДЕРЖАНИЯ ПЛАЗМЫ В МНОГОПРОБОЧНОЙ ЛОВУШКЕ ГОЛ-3
А.В. Аржанников, В.Т. Астрелин, А.Д. Беклемишев, А.В. Бурдаков, В.С. Бурмасов, Г.Е. Деревянкин,
В.Г. Иваненко, И.А. Иванов, М.В. Иванцивский, И.В. Кандауров, В.В. Конюхов, И.А. Котельников,
В.М. Ковеня, Т.В. Козлинская, К.Н. Куклин, А.С. Кузнецов, С.А. Кузнецов, К.В. Лотов, И.В. Тимофеев,
А.Г. Макаров, К.И. Меклер, В.С. Николаев, С.С. Попов, В.В. Поступаев, С.В. Полосаткин, А.Ф. Ровенских,
А.А. Шошин, И.В. Шваб, С.Л. Синицкий, Ю.С. Суляев, В.Д. Степанов, Ю.А. Трунев, Л.Н. Вячеславов,
В.П. Жуков, Э.Р. Зубаиров
Представлены недавние результаты экспериментов на установке ГОЛ-3. Плазма с плотностью 1014…1016 см-3
удерживается в 12-метровом соленоиде, состоящем из 55 ячеек с пробочным отношением Bmax/Bmin=4.8/3.2 Тл. Плазма
нагревается мощным релятивистским электронным пучком (~1 МэВ, ~30 кА, ~8 мкс, ~120 кДж) до температуры
2…4 кэВ. Обсуждаются механизм быстрого нагрева ионов, вопросы устойчивости и удержания плазмы.
ВИВЧЕННЯ УТРИМАННЯ ПЛАЗМИ В БАГАТОПРОБКОВІЙ ПАСТЦІ ГОЛ-3
А.В. Аржанніков, В.Т. Астрелін, О.Д. Беклемішев, О.В. Бурдаков, В.С. Бурмасов, Г.Є. Деревянкін,
В.Г. Іваненко, І.О. Іванов, М.В. Іванцівський, І.В. Кандауров, В.В. Конюхов, І.О. Котельников, В.М. Ковеня,
Т.В. Козлінська, К.М. Куклін, О.С. Кузнєцов, С.О. Кузнєцов, К.В. Лотов, І.В. Тимофєєв, О.Г. Макаров,
К.І. Меклер, В.С. Ніколаєв, С.С. Попов, В.В. Поступаєв, С.В. Полосаткін, А.Ф. Ровенських, А.О. Шошин,
І.В. Шваб, С.Л. Синицький, Ю.С. Суляєв, В.Д. Степанов, Ю.О. Труньов, Л.М. Вячеславов,
В.П. Жуков, Е.Р. Зубаїров
Представлено недавні результати експериментів на установці ГОЛ-3. Плазма з густиною 1014…1016см-3
утримується в 12-метровому соленоїді, який складається з 55 осередків із пробковим відношенням Bmax/Bmin=4.8/3.2Тл.
Плазма нагрівається могутнім релятивістським електронним пучком (~1 МеВ, ~30 кА, ~8 мкс, ~120 кДж) до
температури 2...4 кеВ. Обговорюються механізм швидкого нагрівання іонів, питання стійкості й утримання плазми.
0 20 40 60 80 100 120 14
time, mi oseconds
0
cr
0E+000
4E+009
8E+009
1E+010
2E+010
2E+010
in
te
ns
ity
o
f n
eu
tro
n
em
is
si
on
, c
m
-2
c
-1
0E+000
2E+009
4E+009
60 64 68 72 76 80
shot #PL6397
0 20 40 60 80 100 120 14
time, mi oseconds
0
cr
0E+000
4E+009
8E+009
1E+010
2E+010
2E+010
in
te
ns
ity
o
f n
eu
tro
n
em
is
si
on
, c
m
-2
c
-1
0E+000
2E+009
4E+009
60 64 68 72 76 80
shot #PL6397
Fig.7. Periodic oscillation of the neutron flux. These
oscillations are explained by excitation of bounce
oscillations of fast ions in a cell of multi mirror trap
We conclude that scattering of plasma ions in the trap is determined by scattering of particles on turbulence. Now the nature of occurrence of micro fields in the plasma, resulting in improvement of confinement, is not clear. One of the possible mechanisms of improvement of longitudinal confinement is excitation of bounce oscillations near ends of the trap. Anyway, the fact of improvement of plasma confinement at moderate density is positive from the point of view of prospects of a multi mirror trap as fusion reactor.
|