Formation of MoO₃ crystals in electric arc plasma source

Formation of molybdenum trioxide crystals by electric arc discharge between molybdenum electrodes is considered. Molybdenum oxide crystals were deposited on side surface of anode. Observation of crystals formation zone was used for determination of main formations stages. Plasma temperature was esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Lebid, A.V., Veklich, A.N., Boretskij, V.F., Kolesnyk, O.G., Savenok, S.P., Andreev, O.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/81947
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Formation of MoO₃ crystals in electric arc plasma source / A.V. Lebid, A.N. Veklich, V.F. Boretskij, O.G. Kolesnyk, S.P. Savenok, O.V. Andreev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 141-144. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81947
record_format dspace
spelling irk-123456789-819472015-05-23T03:02:05Z Formation of MoO₃ crystals in electric arc plasma source Lebid, A.V. Veklich, A.N. Boretskij, V.F. Kolesnyk, O.G. Savenok, S.P. Andreev, O.V. Низкотемпературная плазма и плазменные технологии Formation of molybdenum trioxide crystals by electric arc discharge between molybdenum electrodes is considered. Molybdenum oxide crystals were deposited on side surface of anode. Observation of crystals formation zone was used for determination of main formations stages. Plasma temperature was estimated by optical emission spectroscopy method. The resulting products were studied by X-rays diffraction, time-of-flight laser mass-spectrometry and optical microscopy methods. It was found, that self-organizing vapor-deposition process of MoO₃ crystals formation has place. The resulting product is colorless sparkling prisms and platelets, which are mainly consist of orthorhombic α-MoO₃ phase. Optical microscopy indicates the formation of closely packed feather-like pin structures by vapor-solid process. Рассматривается формирование кристаллов триоксида молибдена при помощи электродугового разряда между молибденовыми электродами. Кристаллы формировались на боковой поверхности анода во время горения дуги. Эти кристаллы представляют собой прозрачные блестящие призмы и пластинки, состоящие, главным образом, из орторомбической фазы MoO₃. Для определения основных этапов формирования кристаллов, их химического состава и структуры применялись наблюдение зоны роста, рентгеноструктурный анализ, времяпролетная масс-спектрометрия и микроскопические исследования. Розглянуто формування кристалів триоксиду молібдену за допомогою електродугового розряду між молібденовими електродами. Кристали формувались на боковій поверхні анода під час горіння вільноіснуючої електричної дуги. Ці кристали являли собою прозорі блискучі призми та пластинки, які складались, головним чином, із орторомбічної фази MoO₃. Для визначення основних етапів формування кристалів, їх хімічного складу та структури застосовувались спостереження зони росту, 2014 Article Formation of MoO₃ crystals in electric arc plasma source / A.V. Lebid, A.N. Veklich, V.F. Boretskij, O.G. Kolesnyk, S.P. Savenok, O.V. Andreev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 141-144. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.50.Dg, 52.77.-j, 81.15.Gh http://dspace.nbuv.gov.ua/handle/123456789/81947 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Lebid, A.V.
Veklich, A.N.
Boretskij, V.F.
Kolesnyk, O.G.
Savenok, S.P.
Andreev, O.V.
Formation of MoO₃ crystals in electric arc plasma source
Вопросы атомной науки и техники
description Formation of molybdenum trioxide crystals by electric arc discharge between molybdenum electrodes is considered. Molybdenum oxide crystals were deposited on side surface of anode. Observation of crystals formation zone was used for determination of main formations stages. Plasma temperature was estimated by optical emission spectroscopy method. The resulting products were studied by X-rays diffraction, time-of-flight laser mass-spectrometry and optical microscopy methods. It was found, that self-organizing vapor-deposition process of MoO₃ crystals formation has place. The resulting product is colorless sparkling prisms and platelets, which are mainly consist of orthorhombic α-MoO₃ phase. Optical microscopy indicates the formation of closely packed feather-like pin structures by vapor-solid process.
format Article
author Lebid, A.V.
Veklich, A.N.
Boretskij, V.F.
Kolesnyk, O.G.
Savenok, S.P.
Andreev, O.V.
author_facet Lebid, A.V.
Veklich, A.N.
Boretskij, V.F.
Kolesnyk, O.G.
Savenok, S.P.
Andreev, O.V.
author_sort Lebid, A.V.
title Formation of MoO₃ crystals in electric arc plasma source
title_short Formation of MoO₃ crystals in electric arc plasma source
title_full Formation of MoO₃ crystals in electric arc plasma source
title_fullStr Formation of MoO₃ crystals in electric arc plasma source
title_full_unstemmed Formation of MoO₃ crystals in electric arc plasma source
title_sort formation of moo₃ crystals in electric arc plasma source
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/81947
citation_txt Formation of MoO₃ crystals in electric arc plasma source / A.V. Lebid, A.N. Veklich, V.F. Boretskij, O.G. Kolesnyk, S.P. Savenok, O.V. Andreev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 141-144. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lebidav formationofmoo3crystalsinelectricarcplasmasource
AT veklichan formationofmoo3crystalsinelectricarcplasmasource
AT boretskijvf formationofmoo3crystalsinelectricarcplasmasource
AT kolesnykog formationofmoo3crystalsinelectricarcplasmasource
AT savenoksp formationofmoo3crystalsinelectricarcplasmasource
AT andreevov formationofmoo3crystalsinelectricarcplasmasource
first_indexed 2025-07-06T07:43:45Z
last_indexed 2025-07-06T07:43:45Z
_version_ 1836882678398320640
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 141-144. 141 FORMATION OF MoO3 CRYSTALS IN ELECTRIC ARC PLASMA SOURCE A.V. Lebid, A.N. Veklich, V.F. Boretskij, O.G. Kolesnyk, S.P. Savenok, O.V. Andreev Taras Shevchenko National University of Kyiv, Ukraine E-mail: tgctg@yandex.ru, van@univ.kiev.ua Formation of molybdenum trioxide crystals by electric arc discharge between molybdenum electrodes is considered. Molybdenum oxide crystals were deposited on side surface of anode. Observation of crystals formation zone was used for determination of main formations stages. Plasma temperature was estimated by optical emission spectroscopy method. The resulting products were studied by X-rays diffraction, time-of-flight laser mass- spectrometry and optical microscopy methods. It was found, that self-organizing vapor-deposition process of MoO3 crystals formation has place. The resulting product is colorless sparkling prisms and platelets, which are mainly consist of orthorhombic α-MoO3 phase. Optical microscopy indicates the formation of closely packed feather-like pin structures by vapor-solid process. PACS: 52.50.Dg, 52.77.-j, 81.15.Gh INTRODUCTION Molybdenum trioxide MoO3 has some unique physicochemical properties. It can be used as perspective material for lithium-ion batteries [1,2]; as highly field emission cathode for display devices [3]; as catalyst for hydrocarbons transformation reactions [4] and as material for thin film gas sensors [5]. Fabrication of MoO3 usually is performed by chemical or physical methods. The physical methods allow to obtain micro- and nano- structured materials, particularly crystals. These methods are mainly based on vapor-deposition processes. Such kind of processes are organized by evaporation of molybdenum or molybdenum oxide powders in special furnace [1,6], evaporation of molybdenum foil by infra-red heating [3], atmospheric plasma processes based on UHF discharge [2, 7]. The aim of this work is determination of peculiarities of crystal formation in the electric arc plasma source. 1. EXPERIMENTAL TECHNIQUES The vertically oriented free-burning arc was ignited in air between the end surfaces of metallic molybdenum non-cooled electrodes (Fig. 1,a). The diameter of the rod electrodes was 6 mm, the discharge gap was 8 mm and DC current was 3.5 A. Molybdenum oxide appears on side surface of anode (Fig. 1,b) during arcing. It must be noted, that zone of crystals formation has place at 3...5 mm below the end surface of electrode. The middle cross-section of electric arc discharge plasma was studied by optical emission spectroscopy technique [8]. The realized configuration of experimental setup with diffraction grating 600 g/mm permits simultaneous registration of spatial intensity distribution in spectral range 400…660 nm. Video registration of crystal formation zone was used for determination of main process stages. Peculiarities of crystal structure were studied by optical microscopy method with using of MBI-1 microscope. a b Fig. 1. Experimental scheme (a) and general view of anode with deposited MoO3-crystals (b) mailto:tgctg@yandex.ru 142 ISSN 1562-6016. ВАНТ. 2014. №6(94) Chemical composition and structure of obtained crystals and evaporation products were determined by X-rays diffraction method and time-of-flight laser mass- spectrometry. 2. RESULTS AND DISCUSSIONS 2.1. PLASMA SPECTROSCOPY Optical emission spectroscopy and Boltzmann plot method was used for determination of plasma temperature. MoI spectral lines 473.1, 476.0, 550.6, 553.3, 557.0 and 603.0 nm (Fig. 2) and preliminary selected spectroscopic data [9] were used. The temperature in the middle cross-section of plasma was estimated as 8000 K. 2.2. CRYSTAL FORMATION The process of crystals formation during arc discharge can be separated on specific sequential stages. Immediately after arc ignition there wasn’t evaporation due to relatively low temperature of anode surface (Fig. 3,a). After few seconds a white fume was observed around the electrode (Fig. 3, b). This stage was explained by oxidation of metallic molybdenum and volatilization of oxides at increasing electrode temperature. Really, oxidation of metallic molybdenum surface and volatilization of oxide layer were observed during heating in the furnance [1, 6]. It was mentioned in work [6] that oxide layer completely evaporates from molybdenum surface at temperature above 1150 C. So, this assumption explains the absence of crystals near the end surface of electrode (see Fig. 1,b) where surface temperature was obviously more higher. The MoO3-crystallites on electrode surface appeared at the next process phase (Fig. 3,c). Crystals start growing from white fume evaporations, which are transported by convectional air flow. Probably, initial crystallization starts on surface defects or on greyish- black particles, which can be Mo2O3. Friable layer around electrode (see Fig. 1,b), which consists of irregular oriented transparent prisms and platelets, was formed by vapor deposition. Re-evaporation of deposited crystals is avoided by two reasons. The first one is low thermal conductivity between electrode and crystallites due to their irregular orientation. The crystallites are weakly connected to electrode surface but have numerous connection with 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 0 50 100 150 Wavelength, nm MoI 476.0MoI 473.1 MoI 550,6 MoI 553,3 MoI 557,0 MoI 603,0 Intensity, a.u Fig. 2. Registered spectrum and it’s interpretation a b c Fig. 3. View of anode at different process stages. Initial view – 7 s after arc ignition (a), appearance of white fume at 17 s (b), formation of MoO3-crystallites at 25 s (c) ISSN 1562-6016. ВАНТ. 2014. №6(94) 143 others. The second reason is cooling of crystallites by convectional flows. Therefore, in proposed plasma source self- organizing vapor-deposition process of MoO3-crystals formation has place. The process consists of molybdenum surface oxidation, evaporation of oxide layers, vapour transportation by convectional air flow and crystal growth. Usually formation of crystals is terminated after 2 min after arc ignition. It can be explained by overlapping of molybdenum surface by crystals, which complicates following evaporation and transportation of building material. 2.3. CHEMICAL COMPOSITION AND STRUCTURE Chemical composition and structure of produced crystals were determined by time-of-flight laser mass- spectrometry (Fig. 4) and X-rays diffraction method (Fig. 5, a,b). Obtained crystals were detached from electrode surface and milled before the investigations. X-ray diffraction (XRD) study indicates that resulting crystals consist of orthorhombic α-MoO3 phase (see Fig. 5, a). Positions of diffraction peaks are in good agreement with reference data [10]. High intensity of some diffraction peaks can be explained by orientation effects in structure of obtained crystalline material. Only slight admixture of monoclinic β-MoO3 phase was detected. Two forms of deposited crystals has place. The prismatic transparent crystallites with longitudinal dimension up to 3 mm and flat platelets (Fig. 6) with dimensions up to 3x3 mm are obtained. 20 30 40 50 0 200 400 600 800 1000 1200 I detector , a.u. I detector - detector signal, 2 o І -MoO 3 , a.u. 0 50 100 I -MoO 3 - reference data [10] a b Fig. 5. XRD diagrams for MoO3-crystals (a) and evaporation products deposited on nickel foil (b) 100 μm a b Fig. 6. Optical microscopy of crystals growth structures 0 20 40 60 80 100 120 200 400 600 O + O ++ Mo + Signal Intensity, a.u. Mass to charge ratio, m/z Mo ++ Fig. 4. Time of flight mass-spectrometry diagram for obtained crystals 142 ISSN 1562-6016. ВАНТ. 2014. №6(94) Optical microscopy indicates formation of closely packed feather-like structures (see Fig. 6 a,b). Every “feather” consists of closely packed parallel needles, which are unfinished structures of directional crystal growth. Probably, attaching of building material on these pins has place during vapor deposition process and supports further translation of crystal structure. Additionally evaporation products were collected on mounted above the cathode nickel foil (see Fig. 1,b). The deposited material also consists of MoO3, but the content of β-MoO3 in powder is significantly higher than in crystals. The ratio α-MoO3 / β-MoO3 can be estimated from XRD peak intensities (Fig. 5, b). CONCLUSIONS The temperature of plasma in the middle cross-section of electric arc discharge source was estimated as 8000 K. The following stages of crystal formation were found: molybdenum surface oxidation, evaporation of oxide layer, vapour transportation by convectional air flow and crystal growth. The crystals are prismatic transparent prisms and flat platelets with dimensions up to 3 mm. The peculiarity of crystal was closely packed feather-like structures. Every “feather” consists of parallel needles–unfinished structures of directional crystal growth. XRD analysis indicates that resulting crystals mainly consist of orthorhombic α-MoO3 phase and only slight admixture of monoclinic β-MoO3 phase was detected. But the content of β-MoO3 in deposited evaporation products (powder) is significantly higher than in crystals. REFERENCES 1. W. Li, F. Cheng, Z. Tao, J. Chen. Vapor-transportation preparation and reversible lithium intercalation / deintercalation of α-MoO3 microrods // J. Phys. Chem. B. 2006, v. 110, p. 119-124. 2. D. Mariotti, H. Lindstrom, A. Chandra Bose, K Ostrikov. Monoclinic β-MoO3 nanosheets produced by atmospheric microplasma: application to lithium-ion batteries // Nanotechnology. 2008, № 19, p. 495302. 3. Y.B. Li, Y. Bando, D. Golberg and K. Kurashima. Field emission from MoO3 nanobelts // Appl. Phys. Lett. 2002, № 81, p. 5048-5050. 4. K.T. Queeney, C.M. Friend. Site-Selective Surface Reactions: Hydrocarbon Oxidation Processes on Oxidized Mo (110) // J. Phys. Chem. B. 2000, v. 104, № 3, p. 409-415. 5. E. Comini , G. Faglia, G. Sberveglieri, C. Cantlini, M. Passacantando , S. Santucci,Y. Li, W. Wlodarski, W. Qu. Carbon monoxide response of molybdenum oxide thin films deposited by different techniques // Sensors and Actuators. 2000, v. 68, p. 168-174. 6. F.W. Vahldiek. Growth and microstructure of molybdenum oxide // Journal of the Less-Common Metals. 1968, № 16, p. 351-359. 7. A. Chandra Bose, Y. Shimizu, D. Mariotti, T. Sasaki, K. Terashima, N. Koshizaki. Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing // Nanotechnology. 2006, v. 17, № 24, p. 5976-5982. 8. A. Veklich, A. Lebid. Technique of electric arc discharge plasma diagnostic: peculiarities of registration and treatment of spectra // Bulletin of Taras Shevchenko National University of Kyiv. Radiophysics and electronics, 2012, № 18. p. 6-9. 9. A.N. Veklich, A.V. Lebid, T.A. Tmenova, V.F. Boretskij. Spectroscopic investigations of electric arc plasma with additions of copper and molybdenum // Bulletin of Taras Shevchenko National University of Kyiv Series Physics & Mathematics. 2013, № 1, p. 251-256. 10. Powder diffraction files. Pdf-2. The International Centre for Diffraction Data 2013 (Available from: http://www.icdd.com/products/pdf2.htm). 11. I. Juarez Ramirez, A. Martinez-de la Cruz. Synthesis of β-MoO3 by vacuum drying and its structural and electrochemical characterisation // Materials Letters. 2003, v. 57, p. 1034-1039. Article received 30.09.2014 ФОРМИРОВАНИЕ КРИСТАЛЛОВ MoO3 В ЭЛЕКТРОДУГОВОМ ИСТОЧНИКЕ ПЛАЗМЫ А.В. Лебедь, А.Н. Веклич, В.Ф. Борецкий, О.Г. Колесник, С.П. Савенок, А.В. Андреев Рассматривается формирование кристаллов триоксида молибдена при помощи электродугового разряда между молибденовыми электродами. Кристаллы формировались на боковой поверхности анода во время горения дуги. Эти кристаллы представляют собой прозрачные блестящие призмы и пластинки, состоящие, главным образом, из орторомбической фазы MoO3. Для определения основных этапов формирования кристаллов, их химического состава и структуры применялись наблюдение зоны роста, рентгеноструктурный анализ, времяпролетная масс-спектрометрия и микроскопические исследования. ФОРМУВАННЯ КРИСТАЛІВ MoO3 В ЕЛЕКТРОДУГОВОМУ ДЖЕРЕЛІ ПЛАЗМИ А.В. Лебідь, А.М. Веклич, В.Ф. Борецький, О.Г. Колесник, С.П. Савенок, О.В. Андрєєв Розглянуто формування кристалів триоксиду молібдену за допомогою електродугового розряду між молібденовими електродами. Кристали формувались на боковій поверхні анода під час горіння вільноіснуючої електричної дуги. Ці кристали являли собою прозорі блискучі призми та пластинки, які складались, головним чином, із орторомбічної фази MoO3. Для визначення основних етапів формування кристалів, їх хімічного складу та структури застосовувались спостереження зони росту, рентгеноструктурний аналіз, часопролітна лазерна мас-спектрометрія та мікроскопічні дослідження. 144 http://www.icdd.com/products/pdf2.htm