Ethanol conversion in glow and barrier discharges

The efficiency of ethanol conversion in glow and barrier discharges is analyzed. It is found that for a given power the ethanol conversion is more efficient in glow discharge. This is caused by the principal difference in the way of generation of active atoms and radicals in both types of discharges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Levko, D.S., Tsymbaluk, A.N., Kolgan, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/81950
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ethanol conversion in glow and barrier discharges / D.S. Levko, A.N. Tsymbaluk, V.V. Kolgan // Вопросы атомной науки и техники. — 2014. — № 6. — С. 212-214. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81950
record_format dspace
spelling irk-123456789-819502015-05-23T03:01:53Z Ethanol conversion in glow and barrier discharges Levko, D.S. Tsymbaluk, A.N. Kolgan, V.V. Низкотемпературная плазма и плазменные технологии The efficiency of ethanol conversion in glow and barrier discharges is analyzed. It is found that for a given power the ethanol conversion is more efficient in glow discharge. This is caused by the principal difference in the way of generation of active atoms and radicals in both types of discharges. In addition, the main channels leading to the generation and quenching of H₂ and CO are studied. The method to increase the efficiency is proposed. Анализируется эффективность преобразования этанола в тлеющем и барьерном разрядах. Обнаружено, что при заданной мощности преобразование этанола является более эффективным в тлеющем разряде. Это обусловлено различием в способе генерации активных атомов и радикалов в обоих типах разрядов. Также изучаются основные каналы, ведущие к генерации и тушению молекул Н₂ и СО. Предложен способ по повышению эффективности конверсии этанола в барьерном разряде. Аналізується ефективність перетворення етанолу в тліючому і бар'єрному розрядах. Виявлено, що при заданій потужності перетворення етанолу є ефективнішим у тліючому розряді. Це обумовлено розходженням у способі генерації активних атомів і радикалів в обох типах розрядів. Також, вивчаються основні канали, що ведуть до генерації та гасіння молекул Н₂ і СО. Пропонується спосіб щодо підвищення ефективності конверсії етанолу в бар’єрному розряді. 2014 Article Ethanol conversion in glow and barrier discharges / D.S. Levko, A.N. Tsymbaluk, V.V. Kolgan // Вопросы атомной науки и техники. — 2014. — № 6. — С. 212-214. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.65.-y, 52.80.-s http://dspace.nbuv.gov.ua/handle/123456789/81950 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Levko, D.S.
Tsymbaluk, A.N.
Kolgan, V.V.
Ethanol conversion in glow and barrier discharges
Вопросы атомной науки и техники
description The efficiency of ethanol conversion in glow and barrier discharges is analyzed. It is found that for a given power the ethanol conversion is more efficient in glow discharge. This is caused by the principal difference in the way of generation of active atoms and radicals in both types of discharges. In addition, the main channels leading to the generation and quenching of H₂ and CO are studied. The method to increase the efficiency is proposed.
format Article
author Levko, D.S.
Tsymbaluk, A.N.
Kolgan, V.V.
author_facet Levko, D.S.
Tsymbaluk, A.N.
Kolgan, V.V.
author_sort Levko, D.S.
title Ethanol conversion in glow and barrier discharges
title_short Ethanol conversion in glow and barrier discharges
title_full Ethanol conversion in glow and barrier discharges
title_fullStr Ethanol conversion in glow and barrier discharges
title_full_unstemmed Ethanol conversion in glow and barrier discharges
title_sort ethanol conversion in glow and barrier discharges
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/81950
citation_txt Ethanol conversion in glow and barrier discharges / D.S. Levko, A.N. Tsymbaluk, V.V. Kolgan // Вопросы атомной науки и техники. — 2014. — № 6. — С. 212-214. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT levkods ethanolconversioninglowandbarrierdischarges
AT tsymbalukan ethanolconversioninglowandbarrierdischarges
AT kolganvv ethanolconversioninglowandbarrierdischarges
first_indexed 2025-07-06T07:44:18Z
last_indexed 2025-07-06T07:44:18Z
_version_ 1836882711002742784
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) 212 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 212-214. ETHANOL CONVERSION IN GLOW AND BARRIER DISCHARGES D.S. Levko 1 , A.N. Tsymbaluk 2 , V.V. Kolgan 3 1 LAPLACE (Laboratoire Plasma et Conversion d’Energie), Universite de Toulouse, UPS, INPT Toulouse, France; 2 East Ukrainian National University name Vladimir Dal, Lugansk, Ukraine; 3 Taras Shevchenko National University of Kyiv, Ukraine E-mail: dima.levko@gmail.com The efficiency of ethanol conversion in glow and barrier discharges is analyzed. It is found that for a given power the ethanol conversion is more efficient in glow discharge. This is caused by the principal difference in the way of generation of active atoms and radicals in both types of discharges. In addition, the main channels leading to the generation and quenching of H2 and CO are studied. The method to increase the efficiency is proposed. PACS: 52.65.-y, 52.80.-s INTRODUCTION Nowadays, mixture of molecular hydrogen H2 and carbon monoxide CO (further, syn-gas) is used for the synthesis of different chemicals [1], is used as an intermediate reagent for the liquid fuel generation [2] as well as it is proposed using as an alternative fuel [3]. One of the efficient ways of syn-gas production is its generation from the ethanol in non-equilibrium plasmas of electrical discharges in plasma-chemical reactors of different types [3, 4]. The choice of non-equilibrium plasma is caused by more efficient use of electrical power [4-6]. The main types of discharges for the generation of non-equilibrium plasma are glow discharge (GD), dielectric barrier discharge (DBD), high-frequency and microwave discharges. Both GD and DBD are widely used discharges for the generation of syn-gas. For instance, DBD was studied experimentally in [7], while GD was studied in [8]. The comparison between these two papers shows that for the same power GD allows obtaining larger density of syn- gas. Also, in accordance with [4] DBD has smaller energy efficiency in comparison with other discharges. The difference between these discharges requires detailed study. The aim of the present paper is the comparison of efficiency of the ethanol conversion in DBD and GD. For this purpose the global (zero-dimensional) model is used. It is assumed in this model that the initial component content of the gas mixture is identical for both discharges. Also, the power introduced in the discharge is also assumed to be the same. 1. PHYSICAL MODEL In order to study the plasma kinetics in both discharges the model developed in [10] is used. The gas mixture consists of argon (typical density ~10 19 cm -3 ), ethanol (~10 18 cm -3 ) and water (~10 18 cm -3 ). Argon is used as a buffer gas. Its admixture increases the average electron energy, which results in the increase in the rates of electron-molecular reactions. In addition, since argon is a rare gas it does not participate in chemical reactions. This simplifies the analysis of the obtained results. It is assumed that DBD is the sequence of discharges which temporal duration is 15 ns (power-on stage). At this stage one obtains the electric current through the cathode-anode gap. These discharges are separated by the intervals when the power is turned off (power-off stage). The frequency of discharges is 18 kHz. In the opposite, in GD the power is introduced in the discharge continuously. In order to compare DBD and GD the calculations are carried out for the time during which the same energy is spent. The following assumptions are made in the model: 1) electrical power introduced in the discharge is averaged over the entire discharge volume; 2) electric field in the discharge is homogeneous and is constant in time; 3) discharge plasma column is homogeneous; 4) temperature of the gas mixture is constant and equal to 400 K. Such choice of the gas temperature is caused by the fact that usually ethanol is converted in overheated mixture. The gas pressure is atmospheric. 2. NUMERICAL MODEL Numerical modeling includes the following steps: 1) calculation of the electron energy distribution function (EEDF) with the accounting for elastic and non-elastic electron-neutral collisions (with argon, ethanol and water); 2) numerical solution of the system of kinetic equations in zero-dimensional approximation. Kinetic mechanism includes 30 species (C2H5OH, O2, H2O, H2, CO, CH4, CH3CHO etc), 43 electron-molecular reactions and 130 chemical reactions. The rate coefficients of latter processes are taken from NIST database (for details see [10]). The following system of kinetic equations is solved numerically: ...lj lj, ijl j jijei i NNkNkS dt dN . (1) Here Ni, Nj, Nl are the densities of molecules and radicals, kij, kiml are the rate coefficients of chemical reactions for i th component of gas mixture, and Sei are the rates of electron-molecular reactions. The method to define Sei as well as the list of these reactions is detailed in [10]. In GD Sei are calculated at each time step, while in DBD they are calculated only during the power-on stage. Otherwise, Sei are assumed equal to zero. ISSN 1562-6016. ВАНТ. 2014. №6(94) 213 3. RESULTS The simulation results have shown that in both discharges the main channel of H2 generation is the reaction between ethanol and hydrogen atoms: С2Н5ОН + Н → С2Н5О + Н2. (2) However, as it is shown in Fig. 1, the density of H2 is 4 orders of magnitude larger in GD than in DBD. This indicates on the larger efficiency of GD. Fig. 1. Temporal evolution of the H2 density in glow and dielectric barrier discharges The variation of ethanol density during the simulations can be neglected in comparison with the variation of densities of active species. Therefore, in further analysis the density of С2Н5ОН is assumed constant. Keeping constant the ethanol density in reaction (2) one concludes that the difference in efficiency of DBD and GD is explained by the different dynamics of H density in both discharges. The latter is caused by the different temporal duration of reaction of H generation. The simulation results have shown that during the discharge the main reaction of H generation is the ethanol dissociation by the electron impact: С2Н5ОН + е → С2Н5О + Н + е. (3) In DBD this reaction works only during 15 ns, i.e. during the power-on stage. Between subsequent discharges the mixture is not affected by the discharge. Since the gas temperature is small the rate coefficients of thermo-dissociation reactions are small. Therefore, active species are not generated during the power-off stage. These species very fast (during a few microseconds) recombine generating stable molecules (Fig. 2). Figs. 2,a,b show the comparison between the time evolution of H density in GD and DBD. One can see that in GD the density of H grows during ≈1 µs until it reaches the saturation level (~10 13 cm -3 ). Fig. 1 shows that at this stage the density of H2 also grows. Since the time duration of one current pulse in DBD is only 15 ns, the power is turned off before the density of H reaches the steady-state value. It reaches much smaller value of ~10 10 cm -3 . This results in the substantial difference between rates of reaction (2) obtained in DBD and GD. As a consequence, one obtains different efficiency of syn-gas generation in these discharges. In addition, one can conclude from Fig. 2 that in DBD each consequent discharge acts on the mixture which is free from active species. That is, reaction (2) starts with some time delay. Fig. 2. Temporal evolution of the densities of Н, О and ОН (a) in the initial moment of time, and (b) at later times Another important component of syn-gas is the carbon monoxide CO. Fig. 3 shows its temporal evolution obtained for both discharges. Fig. 3. Temporal evolution of the CO density in glow and dielectric barrier discharges 214 ISSN 1562-6016. ВАНТ. 2014. №6(94) One can see that again the efficiency of CO generation is higher in GD. Analysis of the plasma kinetics has shown that CO is mainly generated in the following reactions: СН3СО + М → СН3 + СО + М, (4) НСО + О2 → СО + НО2, (5) where M is the third body (in the present model it is H2O or C2H5OH). Radicals СН3СО and НСО are generated efficiently only during the discharge (or the power-on stage of DBD). During the power-off stage these radicals are quenched. Thus, in analogy with H2, the difference in efficiency of CO generation in DBD and GD is explained by different ways of power introduction in the discharge. CONCLUSIONS Thus, one can conclude that the ethanol conversion in DBD occurs only during short current pulses having temporal duration of 15 ns. As a consequence, the efficiency of ethanol conversion is higher in GD than in DBD for the same initial conditions and the same power introduced in the discharge. From this point of view the use of GD for the generation of H2/CO mixture is more profitable. This result is in qualitative agreement with the results presented in [7, 8]. The disadvantage of pulsed discharge can be removed by the increase in the frequency of discharge pulses. As was obtained above, the main channel of H quenching is the reaction (2), which leads to the generation of H2. The rate coefficient of this reaction at gas temperature of 400 K is ≈2.4×10 -14 cm -3 ·s -1 . Assuming that the largest density of H in DBD is ≈2×10 10 cm -3 one estimates the rate of (2) as ≈7×10 15 cm 3 s -1 . The estimation of time during which the density of H decreases by the order of magnitude gives ≈1 µs. Thus, it is possible to increase the efficiency of ethanol conversion in DBD, if one increases the frequency of the pulses up to 1 MHz. This will occur because each subsequent discharge will act on the mixture containing enough active atoms and radicals. However, the majority of dielectrics are damaged at high frequency due to capacitive currents. Therefore, it seems promising to replace DBD by high-frequency and microwave discharges. For these discharges the frequency 1 MHz and higher is standard. Moreover, for these discharges high frequencies are supported easily at atmospheric pressure. In the opposite, different instabilities develop in glow discharges at these conditions. REFERENCES 1. Synthesis gas combustion: Fundamentals and Applications / Edited by Tim C. Lieuwen, Taylor & Francis Group, 2010. 2. M. Irfan, M. Usman, K. Kusakabe // Energy. 2011. v. 36, p. 12-40. 3. B.-J. Zhong, Q.-T. Yang, F. Yang // Combustion and Flame. 2010, v. 157, p. 2005-2007. 4. G. Petitpas, J.-D. Rollier, A. Darmon, et al. // Int. Journal of Hydrogen Energy. 2007, v. 32, p. 2848-2867. 5. O. Aubry, A.C. Met Khacef, J.M. Cormier // Chem. Eng. J. 2005, v. 106, p. 241. 6. A. Yanguas-Gil, J.L. Hueso, J. Cotrino, A. Caballero, A.R Gonzalez-Elipe // Appl. Phys. Lett. 2004, v. 85, p. 4004. 7. Wang Baowei, Lu. Yijun, Xu . Zhang, Hu. Shuanghui // Journal of Natural Gas Chemistry. 2011, v. 20, p. 151-154. 8. V.Ya. Chernyak, S.V. Olszewski, V.V. Yukhymenko, et al // IEEE Trans. Plasma Science. 2008, v. 36, p. 2933-2939. 9. A.I. Schedrin, D.S. Levko, V.Ya. Chernyak, V.V. Yukhymenko, V.V. Naymov // Letters in GETF. 2008, v. 88, p. 107-110. 10. D.S. Levko, A.N. Tsymbaluk, A.I. Schedrin // Plasma Physics. 2012, v. 38, p. 991-1000 Article received 26.10.2014 КОНВЕРСИЯ ЭТАНОЛА В ТЛЕЮЩЕМ И БАРЬЕРНОМ РАЗРЯДАХ Д.С. Левко, А.Н. Цымбалюк, В.В. Колган Анализируется эффективность преобразования этанола в тлеющем и барьерном разрядах. Обнаружено, что при заданной мощности преобразование этанола является более эффективным в тлеющем разряде. Это обусловлено различием в способе генерации активных атомов и радикалов в обоих типах разрядов. Также изучаются основные каналы, ведущие к генерации и тушению молекул Н2 и СО. Предложен способ по повышению эффективности конверсии этанола в барьерном разряде. КОНВЕРСІЯ ЕТАНОЛУ У ТЛІЮЧОМУ ТА БАР’ЄРНОМ РОЗРЯДАХ Д.С. Левко, А.M. Цимбалюк, В.В. Колган Аналізується ефективність перетворення етанолу в тліючому і бар'єрному розрядах. Виявлено, що при заданій потужності перетворення етанолу є ефективнішим у тліючому розряді. Це обумовлено розходженням у способі генерації активних атомів і радикалів в обох типах розрядів. Також, вивчаються основні канали, що ведуть до генерації та гасіння молекул Н2 і СО. Пропонується спосіб щодо підвищення ефективності конверсії етанолу в бар’єрному розряді.