Thermal plasma of electric arc discharge in air between composite Cu-C electrodes

The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by opt...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Veklich, A., Fesenko, S., Boretskij, V., Cressault, Y., Gleizes, A., Teulet, Ph., Bondarenko, Y., Kryachko, L.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81958
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Thermal plasma of electric arc discharge in air between composite Cu-C electrodes / A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 226-229. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81958
record_format dspace
spelling irk-123456789-819582015-05-23T03:02:01Z Thermal plasma of electric arc discharge in air between composite Cu-C electrodes Veklich, A. Fesenko, S. Boretskij, V. Cressault, Y. Gleizes, A. Teulet, Ph. Bondarenko, Y. Kryachko, L. Низкотемпературная плазма и плазменные технологии The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy techniques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma. Предложена комплексная методика исследования плазмы. На первом этапе методами оптической эмиссионной спектроскопии проводились измерения радиальных распределений температуры и электронной концентрации в плазме электродугового разряда в воздухе между композитными Cu-C и латунными электродами, а также медными электродами в потоке воздуха. На следующем этапе рассчитывались радиальные распределения электропроводности плазменной смеси путем решения уравнения энергетического баланса. Распределение электронной концентрации получено из электропроводности плазмы в допущении локального термодинамического равновесия. Запропонована комплексна методика дослідження плазми. На першому етапі методами оптичної емісійної спектроскопії проводились дослідження радіальних розподілів температури та електронної концентрації в плазмі електродугового розряду в повітрі між композитними Cu-C та латунними електродами, а також мідними електродами в потоці повітря. Наступним кроком розраховувались радіальні розподіли електро-провідності плазмової суміші шляхом розв’язку рівняння енергетичного балансу. Розподіл електронної концентрації отримали з електропровідності плазми в припущенні локальної термодинамічної рівноваги. 2014 Article Thermal plasma of electric arc discharge in air between composite Cu-C electrodes / A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 226-229. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/81958 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Veklich, A.
Fesenko, S.
Boretskij, V.
Cressault, Y.
Gleizes, A.
Teulet, Ph.
Bondarenko, Y.
Kryachko, L.
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
Вопросы атомной науки и техники
description The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy techniques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma.
format Article
author Veklich, A.
Fesenko, S.
Boretskij, V.
Cressault, Y.
Gleizes, A.
Teulet, Ph.
Bondarenko, Y.
Kryachko, L.
author_facet Veklich, A.
Fesenko, S.
Boretskij, V.
Cressault, Y.
Gleizes, A.
Teulet, Ph.
Bondarenko, Y.
Kryachko, L.
author_sort Veklich, A.
title Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
title_short Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
title_full Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
title_fullStr Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
title_full_unstemmed Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
title_sort thermal plasma of electric arc discharge in air between composite cu-c electrodes
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/81958
citation_txt Thermal plasma of electric arc discharge in air between composite Cu-C electrodes / A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 226-229. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT veklicha thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT fesenkos thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT boretskijv thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT cressaulty thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT gleizesa thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT teuletph thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT bondarenkoy thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
AT kryachkol thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes
first_indexed 2025-07-06T07:45:43Z
last_indexed 2025-07-06T07:45:43Z
_version_ 1836882802583273472
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) 226 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 226-229. THERMAL PLASMA OF ELECTRIC ARC DISCHARGE IN AIR BETWEEN COMPOSITE Cu-C ELECTRODES A. Veklich 1 , S. Fesenko 1 , V. Boretskij 1 , Y. Cressault 2 , A. Gleizes 2 , Ph. Teulet 2 , Y. Bondarenko 1 , L. Kryachko 3 1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; 2 Université de Toulouse; UPS, INPT; LAPLACE, France; 3 Institute of Materials Technology Problems NAS of Ukraine, Kyiv, Ukraine E-mail: van@univ.kiev.ua; 29min@ipms.kiev.ua The complex technique of plasma property studies is suggested. As the first step the radial profiles of temper a- ture and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy tech- niques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma. PACS: 52.70.-m, 52.80.Mg INTRODUCTION Usually copper wire and various types of inserts, which are fixed on the contact surface of the pantograph, are widely used in power supply circuits of electric transport. Graphite, coke, copper-graphite composite or copper alloys can be used as materials in producing of such inserts. Each of these types of inserts has some advantages and disadvantages [1]. In particular, in spite of good lubricating properties of graphite and coke inserts, they have a comparatively high electrical resistivity. So, the deterioration of friction parameters of copper trolley wire takes place due to annealing in a result of significant Joule heating. Therefore graphite is mixed with copper powder to reduce of resistivity. The content of copper in such composite inserts is insignificant according to tribology demand. The aim of this work is a study of plasma properties of model electric arc ignited in air atmosphere between Cu-C composite or copper electrodes. This paper deals with experimental investigations of parameters of thermal plasma mixture and calculations of electrical conductivity as well as electron density in discharge column. 1. EXPERIMENTAL INVESTIGATIONS 1.1. ARC DISCHARGE ARRANGEMENT The free burning electric arc was ignited in air between the end surfaces of Cu-C composite non-cooled vertically arranged electrodes. At the fabrication technology copper content in this composition was around 20 %. This cop- per content was additionally verified by mass spectrome- try studies. The peculiarities of surface condition and erosion rate of composite electrodes under influence of arc discharge and plasma composition as well are not studied in detail yet. Nevertheless, it was strongly verified that both electrodes were not significantly consumed during experimental investigations. Additionally arc discharge between non-cooled copper electrodes in air flow 6.4 slpm and arc in air between brass electrodes were studied. The diameter of the rod electrodes was 6 mm, the dis- charge gap was 8 mm and arc current was 3.5 or 30 A. To avoid the metal droplet appearing a pulsing high current mode was used: namely, the rectangular current pulse of 30 A was put on the "duty" low-current (3.5 A) dis- charge. The high-current pulse duration was of 30 ms. The registration of arc plasma radiation was performed at 7 ms after current pulse rise when a steady-state mode of electric arc discharge was realized. We found in our pre- vious investigation that in such steady-state mode of arc discharge in air between copper containing electrodes the local thermodynamical equilibrium (LTE) is realized [2]. A more detail description of experimental setup and measurement procedure are presented in [3, 4]. 1.2. TEMPERATURE MEASUREMENTS Plasma temperatures were obtained by Boltzmann plot method. This method and experimental setup are described in detail in [4]. The examples of radial temperature profiles of electric arc plasma one can find in [5] – for composite Cu-C electrodes at arc current 3.5 A; [6] – for copper electrodes in air flow at arc current 3.5 A and 30 A; [3] – for brass electrodes in air at arc current 3.5 A. Experimentally obtained data of radial temperature distribution was ap- proximated by Gaussian. Both upper (TSup) and bottom (TInf) error bars of temperature were approximated by Gaussian also. 1.3. ELECTRON DENSITY MEASUREMENTS Electron densities were obtained from half-width of spectral line Cu I 515.3 nm in assumption of dominating quadratic Stark effect at 30 A. The spectral device com- bined with Fabry-Perot interferometer in etalon mode was used for registration of spectral line profiles [7]. The examples of radial electron density distributions of elec- tric arc plasma one can find in: [6] – for copper electrodes in air flow at arc current 3.5 A and 30 A: [3] – for brass electrodes in air at arc current 3.5 A. mailto:van@univ.kiev.ua mailto:29min@ipms.kiev.ua ISSN 1562-6016. ВАНТ. 2014. №6(94) 229 2. PLASMA PARAMETERS CALCULATION 2.1. TRANSPORT PROPERTIES OF ARC DISCHARGE PLASMA The radial profiles of thermal and electrical conductivity of air-copper plasma mixtures were calculated in detail in our previous investigation [8]. Plasma of electric arc between copper electrodes in air flow at current 3.5 A was studied. The electrical conductivity σ of air plasma with admixing of copper can be calculated by solution of energy balance equation: 0λ 1 σ = dr dT r dr d r +E 2             . (1) It was found [8] that the copper admixture almost has no influence on the thermal conductivity of such plasma mixture in experimental temperature range 3000 K < T < 6000 K. So, in this approach the thermal conductivity λ of air without any admixtures was used. The electric field E of arc plasma column was measured additionally by discharge length varying. It must be noted that in equation (1) radiation losses term is neglected. Our preliminary estimation of radiation losses, caused by emission of copper spectral lines, showed that influence of this mechanism is insignificant for the temperatures up to 8500 K. Additionally we can note that just similar conclusion was made in paper [9], where author showed that radiation losses of arc between carbon electrodes is negligible in the current range up to 30 A. So, radial distribution of electrical conductivity can be calculated in the following manner:                dr dT r dr d rE =r 2 λ 1 σ . (2) In Fig. 1 electrical conductivity radial profiles of electric arc plasma are shown. Additionally this plasma parameter of arc between copper and brass electrodes for comparison is shown. Calculated data (from equation (2)) was approximated by Gaussian curves according to three different temperature profiles T, TSup and TInf. The procedure of approximation was carried out under strong requirements of true value of experimental discharge current. At the next step of investigation the radial profiles of electron density in arc discharge were obtained from calculated profiles of electrical conductivity. 2.2. ELECTRON DENSITY CALCULATION Since the mobility of electron is much higher than the ion mobility, the ion current in plasma can be ne- glected. Then plasma electrical conductivity can be written as:      rreN=r ee μσ , (3) where e is the elementary electrical charge, Ne(r) – electron density distribution, μe – electron mobility, which can be expressed in terms of the frequency collisions of electron with other particles:    rm e =r te e ν μ , (4) where me is the mass of electron, νt – frequency collisions of electron with particles of all sorts, which can be written as:      p pet r=r νν , (5)     peeppe QurN=r  ν , (6) where νe-p is the frequency collisions of electron with particles of sort "p", Np(r) – the radial distribution of particle density of sort "p" and <ueQe-p> – the average product of electron velocity and collision cross section for particles of sort "p". It was assumed that plasma is in LTE, so Maxwell distribution was used in calculation of the average value <ueQe-p> in equation (6). Thus, electron densities can be obtained from equations (3)-(6). Peculiarities of performed calculation of plasma composition and the cross sections determination are discussed in detail in paper [8]. In Fig. 2 radial profiles of electron densities in electric arc plasma column are shown. Simulations were carried out on the base of obtained electrical conductivities according to three different temperature profiles T, TSup and TInf. In case of electric arcs between copper electrodes in air flow at currents 3.5 and 30 A experimentally measured radial profiles of electron density in plasma between copper electrodes in air flow are additionally shown in Figs. 2,b,c [6]. One can conclude that agreement between experimental and calculated electron density in plasma of arc discharge between copper and brass electrodes is more or less acceptable. Unfortunately, experimental validation of electron densities in electric arc between composite Cu-C is not carried out due to difficulties of measurement techniques adaptation in this arc operation mode. Nevertheless, calculated radial profiles of electron density in electric arc between these electrodes seem to be quite reasonable. At the next step of investigation another kind of experimental techniques must be used to obtain such profiles. 228 ISSN 1562-6016. ВАНТ. 2014. №6(94) 0,0 0,5 1,0 1,5 50 100 150  sup  0  inf  , S m /m r, mm a 0,0 0,5 1,0 1,5 50 100 150  sup  0  inf  , S m /m r, mm b 0 1 2 3 0 300 600 900  sup  0  inf  , S m /m r, mm c 0,0 0,5 1,0 1,5 2,0 50 100 150  , S m /m r, mm  sup  0  inf d Fig. 1. Radial profiles of electrical conductivity calculated from equation (2) and approximation curves σT, σTSup and σTInf in discharge gap of electric arcs between Cu-C electrodes at current 3.5 A in air (a) and between copper elec- trodes in air flow at currents 3.5 A (b) and 30 A (c), and between brass electrodes at current 3.5 A (d) 0,0 0,5 1,0 1,5 2,0 2,0x10 14 4,0x10 14 6,0x10 14 8,0x10 14 N e, c m -3 r, mm Ne sup Ne 0 Ne inf a 0,0 0,5 1,0 1,5 0 2x10 14 4x10 14 6x10 14 8x10 14 N e, c m -3 r, mm Ne sup Ne 0 Ne inf Ne exp b 0 1 2 3 0 1x10 15 2x10 15 3x10 15 4x10 15 5x10 15 N e, c m -3 r, mm Ne sup Ne 0 Ne inf Ne exp c 0,0 0,5 1,0 1,5 2,0 2,0x10 14 4,0x10 14 6,0x10 14 8,0x10 14 N e, c m -3 r, mm Ne sup Ne 0 Ne inf Ne exp d Fig. 2. Radial profiles of electron densities obtained from σT, σTSup and σTInf in discharge gap of electric arcs be- tween Cu-C electrodes in air at current 3.5 A (a) and copper electrodes in air flow at currents 3.5 A (b) and 30 A (c), and between brass electrodes in air at current 3.5 A (d). Experimentally measured profiles are shown as Neexp ISSN 1562-6016. ВАНТ. 2014. №6(94) 229 CONCLUSIONS The complex technique of plasma property studies is suggested. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of plasma electric conductivity were calculated by solution of energy balance equation. The electron density was obtained from the electric conductivity profiles by calculation in LTE assumption and taking into account that thermal conductivity is not affected by electrode material admixtures. The good agreement between experimental and calculated in such way electron densities in plasma of electric arc discharge between copper electrodes in air flow is found. So such approach can be recommended for low temperature thermal plasma diagnostics. ACKNOWLEDGEMENT The authors would like to thank to Prof. Valentin Ya. Berent for the helpful assistance in the provision of composite electrodes. REFERENCES 1. V.Ya. Berent, S.A. Gnezdilov. Improvement of performance of current collectors on the carbon base // Friction & Lubrication in machines and mechanisms. 2009, v. 2, p. 18-23 2. I.L. Babich, V.F. Boretskij, A.N. Veklich, R.V. Semenyshyn. Spectroscopic data and Stark broadening of Cu I and Ag I spectral lines: Selection and analysis // Advances in Space Research. 2014, v. 54, p. 1254-1263. 3. R.V. Semenyshyn, A.N. Veklich, I.L. Babich, V.F. Boretskij. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures // Advances in Space Research. 2014, v. 54, p. 1235-1241. 4. A.N. Veklich, A.V. Lebid, P.V. Soroka, V.F. Boretskij, I.L. Babich. Investigations of thermal plasma with metal impurities. Part II: Peculiarities of spectroscopy by WI, MoI, CuI spectral lines // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2013, v. 19, № 1, p. 213-215. 5. A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid, S.A. Fesenko. Investigations of electric arc plasma between composite Cu-C electrodes // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2013, v. 86, № 4, p. 204-208. 6. V. Boretskij, A. Veklich, Y. Cressault, A. Gleizes, Ph. Teulet. Non-equilibrium plasma properties of electric arc discharge in air between copper electrodes // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2012, v. 18, № 6, p. 181-183. 7. A.N. Veklich, V.Ye. Osidach. The determination of electron density in electric arc discharge plasma // Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics. 2004, v. 2, p. 428-435. 8. V.F. Boretskij, Y. Cressault, Ph. Teulet, A.N. Veklich. Plasma of electric arc discharge in carbon dioxide with copper vapours // XIX th Symposium on Physics of Switching Arc (FSO 2011) 5-9 September 2011, Brno, Czech Republic, p. 121-124. 9. J.J. Lowke. Simple theory of free-burning arcs // J. Phys. D: Appl. Phys. 1979, v. 12, p. 1873-1886. Article received 23.09.2014 ТЕРМИЧЕСКАЯ ПЛАЗМА ЭЛЕКТРОДУГОВОГО РАЗРЯДА В ВОЗДУХЕ МЕЖДУ КОМПОЗИТНЫМИ Cu-C-ЭЛЕКТРОДАМИ А. Веклич, С. Фесенко, В. Борецкий, Y. Cressault, A. Gleizes, Ph. Teulet, Я. Бондаренко, Л. Крячко Предложена комплексная методика исследования плазмы. На первом этапе методами оптической эмисси- онной спектроскопии проводились измерения радиальных распределений температуры и электронной кон- центрации в плазме электродугового разряда в воздухе между композитными Cu-C и латунными электрода- ми, а также медными электродами в потоке воздуха. На следующем этапе рассчитывались радиальные рас- пределения электропроводности плазменной смеси путем решения уравнения энергетического баланса. Распределение электронной концентрации получено из электропроводности плазмы в допущении локально- го термодинамического равновесия. ТЕРМІЧНА ПЛАЗМА ЕЛЕКТРОДУГОВОГО РОЗРЯДУ В ПОВІТРІ МІЖ КОМПОЗИТНИМИ Cu-C-ЕЛЕКТРОДАМИ А. Веклич, С. Фесенко, В. Борецький, Y. Cressault, A. Gleizes, Ph. Teulet,, Я. Бондаренко, Л. Крячко Запропонована комплексна методика дослідження плазми. На першому етапі методами оптичної емісій- ної спектроскопії проводились дослідження радіальних розподілів температури та електронної концентрації в плазмі електродугового розряду в повітрі між композитними Cu-C та латунними електродами, а також мідними електродами в потоці повітря. Наступним кроком розраховувались радіальні розподіли електроп- ровідності плазмової суміші шляхом розв’язку рівняння енергетичного балансу. Розподіл електронної кон- центрації отримали з електропровідності плазми в припущенні локальної термодинамічної рівноваги.