Thermal plasma of electric arc discharge in air between composite Cu-C electrodes
The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by opt...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/81958 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Thermal plasma of electric arc discharge in air between composite Cu-C electrodes / A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 226-229. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-81958 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-819582015-05-23T03:02:01Z Thermal plasma of electric arc discharge in air between composite Cu-C electrodes Veklich, A. Fesenko, S. Boretskij, V. Cressault, Y. Gleizes, A. Teulet, Ph. Bondarenko, Y. Kryachko, L. Низкотемпературная плазма и плазменные технологии The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy techniques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma. Предложена комплексная методика исследования плазмы. На первом этапе методами оптической эмиссионной спектроскопии проводились измерения радиальных распределений температуры и электронной концентрации в плазме электродугового разряда в воздухе между композитными Cu-C и латунными электродами, а также медными электродами в потоке воздуха. На следующем этапе рассчитывались радиальные распределения электропроводности плазменной смеси путем решения уравнения энергетического баланса. Распределение электронной концентрации получено из электропроводности плазмы в допущении локального термодинамического равновесия. Запропонована комплексна методика дослідження плазми. На першому етапі методами оптичної емісійної спектроскопії проводились дослідження радіальних розподілів температури та електронної концентрації в плазмі електродугового розряду в повітрі між композитними Cu-C та латунними електродами, а також мідними електродами в потоці повітря. Наступним кроком розраховувались радіальні розподіли електро-провідності плазмової суміші шляхом розв’язку рівняння енергетичного балансу. Розподіл електронної концентрації отримали з електропровідності плазми в припущенні локальної термодинамічної рівноваги. 2014 Article Thermal plasma of electric arc discharge in air between composite Cu-C electrodes / A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 226-229. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/81958 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Veklich, A. Fesenko, S. Boretskij, V. Cressault, Y. Gleizes, A. Teulet, Ph. Bondarenko, Y. Kryachko, L. Thermal plasma of electric arc discharge in air between composite Cu-C electrodes Вопросы атомной науки и техники |
description |
The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy techniques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma. |
format |
Article |
author |
Veklich, A. Fesenko, S. Boretskij, V. Cressault, Y. Gleizes, A. Teulet, Ph. Bondarenko, Y. Kryachko, L. |
author_facet |
Veklich, A. Fesenko, S. Boretskij, V. Cressault, Y. Gleizes, A. Teulet, Ph. Bondarenko, Y. Kryachko, L. |
author_sort |
Veklich, A. |
title |
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes |
title_short |
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes |
title_full |
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes |
title_fullStr |
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes |
title_full_unstemmed |
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes |
title_sort |
thermal plasma of electric arc discharge in air between composite cu-c electrodes |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2014 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/81958 |
citation_txt |
Thermal plasma of electric arc discharge in air between composite Cu-C electrodes / A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko // Вопросы атомной науки и техники. — 2014. — № 6. — С. 226-229. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT veklicha thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT fesenkos thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT boretskijv thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT cressaulty thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT gleizesa thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT teuletph thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT bondarenkoy thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes AT kryachkol thermalplasmaofelectricarcdischargeinairbetweencompositecucelectrodes |
first_indexed |
2025-07-06T07:45:43Z |
last_indexed |
2025-07-06T07:45:43Z |
_version_ |
1836882802583273472 |
fulltext |
ISSN 1562-6016. ВАНТ. 2014. №6(94)
226 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 226-229.
THERMAL PLASMA OF ELECTRIC ARC DISCHARGE IN AIR
BETWEEN COMPOSITE Cu-C ELECTRODES
A. Veklich
1
, S. Fesenko
1
, V. Boretskij
1
, Y. Cressault
2
, A. Gleizes
2
, Ph. Teulet
2
, Y. Bondarenko
1
,
L. Kryachko
3
1
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
2
Université de Toulouse; UPS, INPT; LAPLACE, France;
3
Institute of Materials Technology Problems NAS of Ukraine, Kyiv, Ukraine
E-mail: van@univ.kiev.ua; 29min@ipms.kiev.ua
The complex technique of plasma property studies is suggested. As the first step the radial profiles of temper a-
ture and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and
brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy tech-
niques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution
of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption
of local thermodynamical equilibrium in plasma.
PACS: 52.70.-m, 52.80.Mg
INTRODUCTION
Usually copper wire and various types of inserts,
which are fixed on the contact surface of the pantograph,
are widely used in power supply circuits of electric
transport. Graphite, coke, copper-graphite composite or
copper alloys can be used as materials in producing of
such inserts. Each of these types of inserts has some
advantages and disadvantages [1]. In particular, in spite
of good lubricating properties of graphite and coke
inserts, they have a comparatively high electrical
resistivity. So, the deterioration of friction parameters of
copper trolley wire takes place due to annealing in a
result of significant Joule heating. Therefore graphite is
mixed with copper powder to reduce of resistivity. The
content of copper in such composite inserts is
insignificant according to tribology demand.
The aim of this work is a study of plasma properties
of model electric arc ignited in air atmosphere between
Cu-C composite or copper electrodes. This paper deals
with experimental investigations of parameters of thermal
plasma mixture and calculations of electrical conductivity
as well as electron density in discharge column.
1. EXPERIMENTAL INVESTIGATIONS
1.1. ARC DISCHARGE ARRANGEMENT
The free burning electric arc was ignited in air between
the end surfaces of Cu-C composite non-cooled vertically
arranged electrodes. At the fabrication technology copper
content in this composition was around 20 %. This cop-
per content was additionally verified by mass spectrome-
try studies. The peculiarities of surface condition and
erosion rate of composite electrodes under influence of
arc discharge and plasma composition as well are not
studied in detail yet. Nevertheless, it was strongly verified
that both electrodes were not significantly consumed
during experimental investigations.
Additionally arc discharge between non-cooled copper
electrodes in air flow 6.4 slpm and arc in air between
brass electrodes were studied.
The diameter of the rod electrodes was 6 mm, the dis-
charge gap was 8 mm and arc current was 3.5 or 30 A. To
avoid the metal droplet appearing a pulsing high current
mode was used: namely, the rectangular current pulse of
30 A was put on the "duty" low-current (3.5 A) dis-
charge. The high-current pulse duration was of 30 ms.
The registration of arc plasma radiation was performed at
7 ms after current pulse rise when a steady-state mode of
electric arc discharge was realized. We found in our pre-
vious investigation that in such steady-state mode of arc
discharge in air between copper containing electrodes the
local thermodynamical equilibrium (LTE) is realized [2].
A more detail description of experimental setup and
measurement procedure are presented in [3, 4].
1.2. TEMPERATURE MEASUREMENTS
Plasma temperatures were obtained by Boltzmann
plot method. This method and experimental setup are
described in detail in [4].
The examples of radial temperature profiles of electric
arc plasma one can find in [5] – for composite Cu-C
electrodes at arc current 3.5 A; [6] – for copper electrodes
in air flow at arc current 3.5 A and 30 A; [3] – for brass
electrodes in air at arc current 3.5 A. Experimentally
obtained data of radial temperature distribution was ap-
proximated by Gaussian. Both upper (TSup) and bottom
(TInf) error bars of temperature were approximated by
Gaussian also.
1.3. ELECTRON DENSITY MEASUREMENTS
Electron densities were obtained from half-width of
spectral line Cu I 515.3 nm in assumption of dominating
quadratic Stark effect at 30 A. The spectral device com-
bined with Fabry-Perot interferometer in etalon mode
was used for registration of spectral line profiles [7]. The
examples of radial electron density distributions of elec-
tric arc plasma one can find in: [6] – for copper electrodes
in air flow at arc current 3.5 A and 30 A: [3] – for brass
electrodes in air at arc current 3.5 A.
mailto:van@univ.kiev.ua
mailto:29min@ipms.kiev.ua
ISSN 1562-6016. ВАНТ. 2014. №6(94) 229
2. PLASMA PARAMETERS CALCULATION
2.1. TRANSPORT PROPERTIES OF ARC
DISCHARGE PLASMA
The radial profiles of thermal and electrical
conductivity of air-copper plasma mixtures were
calculated in detail in our previous investigation [8].
Plasma of electric arc between copper electrodes in air
flow at current 3.5 A was studied.
The electrical conductivity σ of air plasma with
admixing of copper can be calculated by solution of
energy balance equation:
0λ
1
σ =
dr
dT
r
dr
d
r
+E 2
. (1)
It was found [8] that the copper admixture almost
has no influence on the thermal conductivity of such
plasma mixture in experimental temperature range
3000 K < T < 6000 K. So, in this approach the thermal
conductivity λ of air without any admixtures was used.
The electric field E of arc plasma column was measured
additionally by discharge length varying. It must be
noted that in equation (1) radiation losses term is
neglected.
Our preliminary estimation of radiation losses,
caused by emission of copper spectral lines, showed that
influence of this mechanism is insignificant for the
temperatures up to 8500 K.
Additionally we can note that just similar conclusion
was made in paper [9], where author showed that
radiation losses of arc between carbon electrodes is
negligible in the current range up to 30 A.
So, radial distribution of electrical conductivity can
be calculated in the following manner:
dr
dT
r
dr
d
rE
=r
2
λ
1
σ . (2)
In Fig. 1 electrical conductivity radial profiles of
electric arc plasma are shown. Additionally this plasma
parameter of arc between copper and brass electrodes for
comparison is shown. Calculated data (from equation
(2)) was approximated by Gaussian curves according to
three different temperature profiles T, TSup and TInf.
The procedure of approximation was carried out
under strong requirements of true value of experimental
discharge current.
At the next step of investigation the radial profiles of
electron density in arc discharge were obtained from
calculated profiles of electrical conductivity.
2.2. ELECTRON DENSITY CALCULATION
Since the mobility of electron is much higher than
the ion mobility, the ion current in plasma can be ne-
glected. Then plasma electrical conductivity can be
written as:
rreN=r ee μσ , (3)
where e is the elementary electrical charge, Ne(r) –
electron density distribution, μe – electron mobility,
which can be expressed in terms of the frequency
collisions of electron with other particles:
rm
e
=r
te
e
ν
μ , (4)
where me is the mass of electron, νt – frequency
collisions of electron with particles of all sorts, which
can be written as:
p
pet r=r νν , (5)
peeppe QurN=r ν , (6)
where νe-p is the frequency collisions of electron with
particles of sort "p", Np(r) – the radial distribution of
particle density of sort "p" and <ueQe-p> – the average
product of electron velocity and collision cross section for
particles of sort "p". It was assumed that plasma is in
LTE, so Maxwell distribution was used in calculation of
the average value <ueQe-p> in equation (6).
Thus, electron densities can be obtained from
equations (3)-(6). Peculiarities of performed calculation
of plasma composition and the cross sections
determination are discussed in detail in paper [8].
In Fig. 2 radial profiles of electron densities in
electric arc plasma column are shown. Simulations were
carried out on the base of obtained electrical
conductivities according to three different temperature
profiles T, TSup and TInf. In case of electric arcs between
copper electrodes in air flow at currents 3.5 and 30 A
experimentally measured radial profiles of electron
density in plasma between copper electrodes in air flow
are additionally shown in Figs. 2,b,c [6].
One can conclude that agreement between
experimental and calculated electron density in plasma
of arc discharge between copper and brass electrodes is
more or less acceptable. Unfortunately, experimental
validation of electron densities in electric arc between
composite Cu-C is not carried out due to difficulties of
measurement techniques adaptation in this arc operation
mode. Nevertheless, calculated radial profiles of
electron density in electric arc between these electrodes
seem to be quite reasonable. At the next step of
investigation another kind of experimental techniques
must be used to obtain such profiles.
228 ISSN 1562-6016. ВАНТ. 2014. №6(94)
0,0 0,5 1,0 1,5
50
100
150
sup
0
inf
, S
m
/m
r, mm
a
0,0 0,5 1,0 1,5
50
100
150
sup
0
inf
, S
m
/m
r, mm
b
0 1 2 3
0
300
600
900
sup
0
inf
, S
m
/m
r, mm
c
0,0 0,5 1,0 1,5 2,0
50
100
150
, S
m
/m
r, mm
sup
0
inf
d
Fig. 1. Radial profiles of electrical conductivity calculated from equation (2) and approximation curves σT, σTSup and
σTInf in discharge gap of electric arcs between Cu-C electrodes at current 3.5 A in air (a) and between copper elec-
trodes in air flow at currents 3.5 A (b) and 30 A (c), and between brass electrodes at current 3.5 A (d)
0,0 0,5 1,0 1,5 2,0
2,0x10
14
4,0x10
14
6,0x10
14
8,0x10
14
N
e,
c
m
-3
r, mm
Ne
sup
Ne
0
Ne
inf
a
0,0 0,5 1,0 1,5
0
2x10
14
4x10
14
6x10
14
8x10
14
N
e,
c
m
-3
r, mm
Ne
sup
Ne
0
Ne
inf
Ne
exp
b
0 1 2 3
0
1x10
15
2x10
15
3x10
15
4x10
15
5x10
15
N
e,
c
m
-3
r, mm
Ne
sup
Ne
0
Ne
inf
Ne
exp
c
0,0 0,5 1,0 1,5 2,0
2,0x10
14
4,0x10
14
6,0x10
14
8,0x10
14
N
e,
c
m
-3
r, mm
Ne
sup
Ne
0
Ne
inf
Ne
exp
d
Fig. 2. Radial profiles of electron densities obtained from σT, σTSup and σTInf in discharge gap of electric arcs be-
tween Cu-C electrodes in air at current 3.5 A (a) and copper electrodes in air flow at currents 3.5 A (b) and 30 A
(c), and between brass electrodes in air at current 3.5 A (d). Experimentally measured profiles are shown as Neexp
ISSN 1562-6016. ВАНТ. 2014. №6(94) 229
CONCLUSIONS
The complex technique of plasma property studies is
suggested. From one hand, the radial profiles of
temperature and electron density in plasma of electric
arc discharge in air between Cu-C composite and brass
electrodes, as well as copper electrodes in air flow
were measured by optical spectroscopy techniques.
From another hand, the radial profiles of plasma electric
conductivity were calculated by solution of energy
balance equation. The electron density was obtained
from the electric conductivity profiles by calculation in
LTE assumption and taking into account that thermal
conductivity is not affected by electrode material
admixtures.
The good agreement between experimental and
calculated in such way electron densities in plasma of
electric arc discharge between copper electrodes in air
flow is found. So such approach can be recommended
for low temperature thermal plasma diagnostics.
ACKNOWLEDGEMENT
The authors would like to thank to Prof. Valentin Ya.
Berent for the helpful assistance in the provision of
composite electrodes.
REFERENCES
1. V.Ya. Berent, S.A. Gnezdilov. Improvement of
performance of current collectors on the carbon base //
Friction & Lubrication in machines and mechanisms.
2009, v. 2, p. 18-23
2. I.L. Babich, V.F. Boretskij, A.N. Veklich,
R.V. Semenyshyn. Spectroscopic data and Stark
broadening of Cu I and Ag I spectral lines: Selection
and analysis // Advances in Space Research. 2014,
v. 54, p. 1254-1263.
3. R.V. Semenyshyn, A.N. Veklich, I.L. Babich,
V.F. Boretskij. Spectroscopy peculiarities of thermal
plasma of electric arc discharge between electrodes with
Zn admixtures // Advances in Space Research. 2014,
v. 54, p. 1235-1241.
4. A.N. Veklich, A.V. Lebid, P.V. Soroka,
V.F. Boretskij, I.L. Babich. Investigations of thermal
plasma with metal impurities. Part II: Peculiarities of
spectroscopy by WI, MoI, CuI spectral lines // Problems
of Atomic Science and Technology. Series “Plasma
Physics”. 2013, v. 19, № 1, p. 213-215.
5. A.N. Veklich, V.F. Boretskij, A.I. Ivanisik,
A.V. Lebid, S.A. Fesenko. Investigations of electric arc
plasma between composite Cu-C electrodes // Problems
of Atomic Science and Technology. Series “Plasma
Electronics and New Methods of Acceleration”. 2013,
v. 86, № 4, p. 204-208.
6. V. Boretskij, A. Veklich, Y. Cressault, A. Gleizes,
Ph. Teulet. Non-equilibrium plasma properties of
electric arc discharge in air between copper electrodes //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2012, v. 18, № 6, p. 181-183.
7. A.N. Veklich, V.Ye. Osidach. The determination of
electron density in electric arc discharge plasma // Bulletin of
Taras Shevchenko National University of Kyiv. Series:
Physics & Mathematics. 2004, v. 2, p. 428-435.
8. V.F. Boretskij, Y. Cressault, Ph. Teulet, A.N. Veklich.
Plasma of electric arc discharge in carbon dioxide with
copper vapours // XIX th Symposium on Physics of
Switching Arc (FSO 2011) 5-9 September 2011, Brno,
Czech Republic, p. 121-124.
9. J.J. Lowke. Simple theory of free-burning arcs // J.
Phys. D: Appl. Phys. 1979, v. 12, p. 1873-1886.
Article received 23.09.2014
ТЕРМИЧЕСКАЯ ПЛАЗМА ЭЛЕКТРОДУГОВОГО РАЗРЯДА В ВОЗДУХЕ МЕЖДУ
КОМПОЗИТНЫМИ Cu-C-ЭЛЕКТРОДАМИ
А. Веклич, С. Фесенко, В. Борецкий, Y. Cressault, A. Gleizes, Ph. Teulet, Я. Бондаренко, Л. Крячко
Предложена комплексная методика исследования плазмы. На первом этапе методами оптической эмисси-
онной спектроскопии проводились измерения радиальных распределений температуры и электронной кон-
центрации в плазме электродугового разряда в воздухе между композитными Cu-C и латунными электрода-
ми, а также медными электродами в потоке воздуха. На следующем этапе рассчитывались радиальные рас-
пределения электропроводности плазменной смеси путем решения уравнения энергетического баланса.
Распределение электронной концентрации получено из электропроводности плазмы в допущении локально-
го термодинамического равновесия.
ТЕРМІЧНА ПЛАЗМА ЕЛЕКТРОДУГОВОГО РОЗРЯДУ В ПОВІТРІ
МІЖ КОМПОЗИТНИМИ Cu-C-ЕЛЕКТРОДАМИ
А. Веклич, С. Фесенко, В. Борецький, Y. Cressault, A. Gleizes, Ph. Teulet,, Я. Бондаренко, Л. Крячко
Запропонована комплексна методика дослідження плазми. На першому етапі методами оптичної емісій-
ної спектроскопії проводились дослідження радіальних розподілів температури та електронної концентрації
в плазмі електродугового розряду в повітрі між композитними Cu-C та латунними електродами, а також
мідними електродами в потоці повітря. Наступним кроком розраховувались радіальні розподіли електроп-
ровідності плазмової суміші шляхом розв’язку рівняння енергетичного балансу. Розподіл електронної кон-
центрації отримали з електропровідності плазми в припущенні локальної термодинамічної рівноваги.
|