Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling

The spatial distributions of plasma parameters in the stellarators LHD and U-2M, operating under recycling conditions with the assumption of neoclassical transport realization, are calculated using the one-dimensional space-time numerical code. The stable solutions of the system of equations for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Rudakov, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/82104
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling / V.A. Rudakov // Вопросы атомной науки и техники. — 2015. — № 1. — С. 41-44. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-82104
record_format dspace
spelling irk-123456789-821042015-05-26T03:02:18Z Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling Rudakov, V.A. Магнитное удержание The spatial distributions of plasma parameters in the stellarators LHD and U-2M, operating under recycling conditions with the assumption of neoclassical transport realization, are calculated using the one-dimensional space-time numerical code. The stable solutions of the system of equations for the spatial distributions of ion and electron temperatures, plasma and neutral neutron density and ambipolar electric field are obtained. The flat spots formation in the radial profiles of plasma parameters near the plasma boundary is shown. PACS: 52.55.HC, 52.25.Fi, 52.25.Ya C использованием одномерного пространственно-временного численного кода рассчитаны пространственные распределения параметров плазмы в стеллараторах LHD и У-2М, работающих в условиях рециклинга в предположении реализации неоклассического переноса. Получены устойчивые решения системы уравнений для пространственных распределений температур ионов и электронов, плотности плазмы и нейтральных атомов, амбиполярного электрического поля. Показано образование плоских участков в радиальных профилях параметров плазмы вблизи границы плазмы. З використанням одновимірного просторово-часового числового коду розраховано просторові розподіли параметрів плазми в стелараторах LHD і У-2М, працюючих в умовах рециклінгу в припущенні реалізації неокласичного перенесення. Отримані стійкі рішення системи рівнянь для просторових розподілів температур іонів і електронів, щільності плазми та нейтральних атомів, амбіполярного електричного поля. Показано утворення плоских ділянок у радіальних профілях параметрів плазми поблизу межі плазми. 2015 Article Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling / V.A. Rudakov // Вопросы атомной науки и техники. — 2015. — № 1. — С. 41-44. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.55.HC, 52.25.Fi, 52.25.Ya http://dspace.nbuv.gov.ua/handle/123456789/82104 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Rudakov, V.A.
Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
Вопросы атомной науки и техники
description The spatial distributions of plasma parameters in the stellarators LHD and U-2M, operating under recycling conditions with the assumption of neoclassical transport realization, are calculated using the one-dimensional space-time numerical code. The stable solutions of the system of equations for the spatial distributions of ion and electron temperatures, plasma and neutral neutron density and ambipolar electric field are obtained. The flat spots formation in the radial profiles of plasma parameters near the plasma boundary is shown. PACS: 52.55.HC, 52.25.Fi, 52.25.Ya
format Article
author Rudakov, V.A.
author_facet Rudakov, V.A.
author_sort Rudakov, V.A.
title Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
title_short Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
title_full Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
title_fullStr Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
title_full_unstemmed Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
title_sort distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/82104
citation_txt Distribution of plasma parameters in the stellarator at neoclassical transport under conditions of recycling / V.A. Rudakov // Вопросы атомной науки и техники. — 2015. — № 1. — С. 41-44. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT rudakovva distributionofplasmaparametersinthestellaratoratneoclassicaltransportunderconditionsofrecycling
first_indexed 2025-07-06T08:14:36Z
last_indexed 2025-07-06T08:14:36Z
_version_ 1836884616513847296
fulltext ISSN 1562-6016. ВАНТ. 2015. №1(95) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 41-44. 41 DISTRIBUTION OF PLASMA PARAMETERS IN THE STELLARATOR AT NEOCLASSICAL TRANSPORT UNDER CONDITIONS OF RECYCLING V.A. Rudakov Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine E-mail: rudakov@kipt.kharkov.ua The spatial distributions of plasma parameters in the stellarators LHD and U-2M, operating under recycling conditions with the assumption of neoclassical transport realization, are calculated using the one-dimensional space- time numerical code. The stable solutions of the system of equations for the spatial distributions of ion and electron temperatures, plasma and neutral neutron density and ambipolar electric field are obtained. The flat spots formation in the radial profiles of plasma parameters near the plasma boundary is shown. PACS: 52.55.HC, 52.25.Fi, 52.25.Ya INTRODUCTION In the most of modern experimental stellarator-type devices the stationary plasma parameters are maintained by the return into the plasma of particles releasing from the confinement volume as a result of diffusion or other loss mechanisms. This process is named as “recycling”. A recycling effect on the increased plasma losses was first observed in the investigations using the stellarator “C” [1]. A cold gas, penetrating into the plasma, undergoes the ionization in the plasma column region, and exerts influence on the formation of the plasma density and temperature profiles. As a result, their gradients are increased that leads to the plasma loss increasing. The recycling influence on the plasma parameters was investigated in the LHD stellarator. The investigation results have shown the formation of flat spots on the density and temperature profiles near the plasma boundary [2]. Calculations on the parameters of a reactor-stellarator, where the plasma density constancy is maintained due to the fuel pellet injection, have shown that the injection of fuel into the plasma periphery region significantly decreases the reactor power level because of plasma loss increasing [3]. In the present paper the spatial distributions of plasma parameters in the stellarators LHD and U-2M, operating under recycling conditions with the assumption of neoclassical transport realization, are calculated using the one-dimensional space-time numerical code. As distinct from [2] here we have used the numerical solution of the system of transport equations with taking into account ambipolar plasma fluxes. By this method, in addition to the plasma density and temperature distributions, we have obtained the profiles of the radial electric field, density of neutral atoms outside the plasma and their distributions in the plasma column volume. 1. PHYSICAL MODEL AND THE SYSTEM OF EQUATIONS In the thermonuclear facility the process of plasma- neutral interaction can occur by the following reactions: H2 + e → 2H + e; (1) H2 + e → H+ + H + 2e ; (2) H + H+ → H+ + H ; (3) H + e → H+ + 2e; (4) H+ + 2e → H + e. (5) Expression (1) refers to the hydrogen molecule dissociation, (2) represents the dissociation with simultaneous atomic ionization. The last three expressions determine the charge exchange of atoms, atomic ionization and recombination. The rates of reactions are given in ref. [4]. In the active phase of the plasma discharge the hydrogen ions, escaping from the confinement volume, are recombining during interaction with the vacuum chamber walls and return into the plasma for the most part in the form of neutral atoms which are ionized due to the interaction with electrons according to the expression [4]: <>i=3.0526∙10 -7 (lnTe –2.9017)Te -1/2 [сm 3 s -1 , eV]. (6) From the point of view of the plasma density maintaining by recycling, in the present study we consider this process as a main one. The molecule ionization with subsequent dissociation and other processes denoted by expression (3)-(5) are neglected because their contribution to the density increase is insignificant. The calculation model is based on the system of equations, given in [5, 6] for description of the space- time behavior of the plasma in the reactor-stellarator, which is supplemented by the equation for neutral atoms. In these equations the terms relating to the synthesis are omitted and instead of the pellet injection model we use, as a plasma source, the source taking into account the charged particle influx due to the neutral atom ionization. At last, the system of equation takes a following form ee ; 3 1 Q 2 e e ei c Eh b T n r Q Q Q Q Q t r r               (7) i ; 3 1 Q Q 2 i i ei Ehi T n r Q Q t r r             (8) e 1 S ; n rS t r r         (9) a .a δ n 1 rS S t r r        (10) The first two equations describe temperature behavior of the electron Eq. (7) and the ion Eq. (8) in the space and time. The next two are a plasma particle and neutral diffusion equations. The first terms on the right side of mailto:rudakov@kipt.kharkov.ua 42 ISSN 1562-6016. ВАНТ. 2015. №1(95) Equations (7), (8) for the electron and ion heat conductions determine the temperature variation caused by the heat flux corresponding to the neoclassical theory Kovrizhnykh [7]. The rest terms on the right sides of Eqs. (7), (8) Qhi and Qhe are, respectively, the heating of ions and electrons emitted by the external sources; Qei  electron-ion heat exchange as a result of Coulomb collisions; Qb  bremsstrahlung; Qc  cyclotron radiation; QE  energy change of particles in the ambipolar electric field during their radial motion; eQ and iQ are thermal expenses for heating the ions and electrons that erased in result of ionization. The charged particle flow Si and Se also correspond to [7]. The neutral atom flux is Sa= an T0/where T0 is the their thermal velocity. And the charged particle source is determined by the expression: δS = an n <>i. The ambipolar electric field value was calculated from the flux equality Se= Si at each time-space array pitch. The system of equations (7)-(10) was supplemented by the initial and boundary conditions. The total number of charged and neutral particles in the plasma and in the chamber volume was maintained to be constant. In all calculations the neutral atom velocity is taken corresponds to the temperature of 1 eV. The different models of plasma heating by the external sources were used: the electron heating only, the ion heating only or simultaneous heating of two components. It has been supposed that the specific heating power is proportional to the plasma density: nkQ hh  . 2. CALCULATION RESULTS Calculations were performed by the example of two devices LHD and U-2M, the parameters of which are given in papers [8, 9]. For U-2M it has been assumed that the plasma radius is 17cm, the chamber radius is 34 cm, and in the case of LHD the radii are 60 and 80 cm respectively. The confinement field values are 2.5 T for LHD and 1 T for U-2M. The dependences of helical field amplitude modulations εh on the plasma radius, taken for the flux definition, were characteristic for the devices under consideration. In particular, a maximum value of εh is 0.6 for LHD and 0.25 for U-2M. Calculations were carried out assuming different plasma density values (conventionally with high and low densities) and different plasma heating values. For the initial plasma density and temperature distributions we have used the expression such as N=N0(1-x j ), where j is an integral number. Most of calculations have been performed under the assumptions that the initial distribution of neutral atom concentration is uniform throughout the vacuum chamber volume, the “burning” of which in the plasma occurs during the evolution of plasma parameters. The value of the neutral density outside the plasma was defined as a result of the balance between the opposite streams of plasma and atoms at the plasma column boundary. 2.1. LHD RESULTS Fig. 1 shows the time dependences of average electron and ion temperature values in LHD in the course of electron heating using the 2 MW source. The initial values of the plasma density and neutral atom density were equal to n0=5∙10 19 m -3 and nh0=5∙10 18 m -3 respectively. In the process of transition to the stationary mode the neutral atom combusting up to 8∙10 14 m -3 in the volume outside the plasma boundary occur. The average plasma density value is increased to 5.85∙10 19 m -3 and the constant level is reached during 0.4 s after the process start. 0,0 0,2 0,4 0,6 0,8 1,0 0,00 0,01 0,02 0,03 0,04 0,05 1 0 k e V Time, s Te Ti Fig. 1. LHD, Temperatures time dependences, Phe =2 MW, <n>=5.85·10 19 m -3 , na0=8·10 14 m -3 The next Figs. 2-5 represent the radial profiles of ion and electron temperatures, plasma densities, ambipolar electric field and neutral atom density. All the profiles evidence on the large plasma parameter gradients at the plasma boundary. Figs. 6 and 7 show the radial plasma density and plasma temperature profiles corresponding to the mode of a relatively low density <n>~3.3∙10 19 m -3 . In this case the plasma heating of electron and ions was done in equal parts Phe=Phi=2 MW. 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1 0 1 4 c m -3 Radius n(r) Fig. 2. Radial profile of the plasma density 0,0 0,2 0,4 0,6 0,8 1,0 0,00 0,01 0,02 0,03 0,04 0,05 0,06 1 0 k e V Radius Te Ti Fig. 3. Profiles of the electron and ion temperatures ISSN 1562-6016. ВАНТ. 2015. №1(95) 43 0,0 0,2 0,4 0,6 0,8 1,0 0,0 2,0x10 -6 4,0x10 -6 6,0x10 -6 8,0x10 -6 Radius Nh(r) x1014 cm-3 Fig. 4. Radial profile of the neutral density 0,0 0,2 0,4 0,6 0,8 1,0 -3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 1 0 k V /m Radius Er Fig. 5. Radial profile of the ambipolar electric filed Here the power contribution, counting on a single charged particle, is larger approximately by a factor of 3.5 compared to the case of <n>~5.85∙10 19 m -3 . As a result, higher temperatures were obtained. Moreover, in the profiles of n(r), Te(r) and Ti(r) different features are observed. A dip in the density curve with a step near the plasma edge takes place. In the ion temperature curve a flat region is formed. The dependence of Er on the radius, in main, is similar to the case with a high density, but there is a sharp dip to the negative values near the jump on the Ti profile. In this case the energy confinement time is 60 ms. 3. U-2M RESULTES The stellarator U-2M has significantly less sizes and a lower magnetic field as compared with LHD. In U-2M helical magnetic field ripples are much larger. Moreover, for plasma heating in U-2M one uses lower 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,1 0,2 0,3 0,4 0,5 1 0 1 4 c m -3 Radius n(r) Fig. 6. Radial plasma density profile, LHD, case of low density, <n>=3.3·10 19 m -3 0,0 0,2 0,4 0,6 0,8 1,0 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 1 0 k e V Radius Te Ti Fig. 7. Electron and ion temperature profiles, <n>=3.3·10 19 m -3 powers Ph = 200 kW. As a result, the plasma density in this device does not exceed several units per 10 18 m -3 . The mentioned features were taken into consideration when defining the parameters of calculations. Figs. 8-10 represents the profiles of temperature, plasma density and electric field for U-2M with the initial average plasma density value n=2.5∙10 18 m -3 and the neutral density in the chamber nh=5∙10 17 m -3 . The plasma heating of electrons and ions was done in equal parts Phe=Phi=0.1 MW. In that case the average electron and ion temperature values were set at a level of Te~400, Ti~170 eV and the neutral atom concentration outside the plasma was nh0~5∙10 16 m -3 . Within the confinement volume the concentration of neutral atoms quickly decreases with the distance from the plasma boundary. The profile of plasma density has a maximum in the vicinity of the boundary of the plasma column. This feature, apparently, is the result of the presence of an intense source δS in this area. The calculations of plasma parameters with the initial plasma density value n=1∙10 18 m -3 and density neutrals in the chamber nh=2∙10 17 m -3 , for the same heating variant as in the case with n=2.5∙10 18 m -3 , shows that the electric field and temperature distributions are of a similar form. However, the plasma density profile has a flat view along the main part of the plasma radius. There is observed a little decrease of n in the vicinity of the plasma center (Fig. 11). Note, that in the case of U-2M the energy confinement time was of 1…1.5 ms. 0,0 0,2 0,4 0,6 0,8 1,0 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 1 0 k e V Radius Te Ti Fig. 8. U-2M, Temperature profiles 44 ISSN 1562-6016. ВАНТ. 2015. №1(95) 0,0 0,2 0,4 0,6 0,8 1,0 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 1 0 1 4 c m -3 Radius n(r) Fig. 9. U-2M, Density profile 0,0 0,2 0,4 0,6 0,8 1,0 -0,40 -0,35 -0,30 -0,25 -0,20 -0,15 -0,10 -0,05 0,00 0,05 1 0 k V /m Radius Er Fig. 10. U-2M, Electric field profile 0,0 0,2 0,4 0,6 0,8 1,0 0,000 0,002 0,004 0,006 0,008 0,010 0,012 0,014 0,016 0,018 1 0 1 4 c m -3 Radius n(r) Fig. 11. U-2M, Density profile, n0=1·10 18 , Phe=Phi=0.1 MW CONCLUSIONS Calculations of spatial plasma parameter distributions in the stellarators U-2M and LHD, operating under conditions of recycling and neoclassic transport realization, show the formation of high gradients for basic plasma and neutral atom parameters near the plasma boundary. In some cases the density profiles are formed with the density decreasing in the vicinity of the plasma center. There the flat spots formed before the gradient sharpening near the plasma boundary are observed. REFERENCES 1. E. Hinnov, A.S. Bishop, and H. Fallon // Plasma Physics. 1968, v. 10, № 3, p. 291. 2. G. Kawamura, Y. Tomito, M. Kabayashi, D. Tsaha- kaya // Proceedings of ITC18. 2008, p. 234-237. 3. V.A. Rudakov // Visnyk Kharkivskogo National’nogo Universytety. Seriya fizychna “Yadra, chastynky, polya”. 2012, № 2/54/, p. 15-23 (in Russian). 4. G.G. Lesnyakov // Voprosy Atomnoj Nauki i Techniki. Seriya “Termoyadernyj sintez”. 1980, № 1, p. 118 (in Russian). 5. V.A. Rudakov // Journal of Kharkiv National University. Physical Series: Nuclei, Particles, Fields. 2012, v. 1017 (3/55), p. 66-74. 6. V.A. Rudako // Journal of Kharkiv National University. Physical Series: Nuclei, Particles, Fields. 2012, v. 1001 (2/54), p. 15-23. 7. L.M. Kovrizhnykh // Nucl. Fusion.1984, v. 24, p. 435. 8. V.E. Bykov, A.V. Georgievskii, V.V. Demchenko, et al. // Fusion Technology.1990, v. 17, № 1, p. 140-147. 9. A. Iiyoshi, M. Fuiwara, O. Motojima, N. Ohyabu, K. Yamazaki // Fusion Technology. 1990, v. 17, № 1, p. 169-187. Article received 10.12.2014 РАСПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПЛАЗМЫ В СТЕЛЛАРАТОРЕ В УСЛОВИЯХ РЕЦИКЛИНГА ПРИ НЕОКЛАССИЧЕСКОМ ПЕРЕНОСЕ В.А. Рудаков C использованием одномерного пространственно-временного численного кода рассчитаны пространственные распределения параметров плазмы в стеллараторах LHD и У-2М, работающих в условиях рециклинга в предположении реализации неоклассического переноса. Получены устойчивые решения системы уравнений для пространственных распределений температур ионов и электронов, плотности плазмы и нейтральных атомов, амбиполярного электрического поля. Показано образование плоских участков в радиальных профилях параметров плазмы вблизи границы плазмы. РОЗПОДІЛИ ПАРАМЕТРІВ ПЛАЗМИ В СТЕЛАРАТОРІ В УМОВАХ РЕЦИКЛІНГУ ПРИ НЕОКЛАСИЧНОМУ ПЕРЕНЕСЕННІ В.А. Рудаков З використанням одновимірного просторово-часового числового коду розраховано просторові розподіли параметрів плазми в стелараторах LHD і У-2М, працюючих в умовах рециклінгу в припущенні реалізації неокласичного перенесення. Отримані стійкі рішення системи рівнянь для просторових розподілів температур іонів і електронів, щільності плазми та нейтральних атомів, амбіполярного електричного поля. Показано утворення плоских ділянок у радіальних профілях параметрів плазми поблизу межі плазми. http://iopscience.iop.org/0032-1028/ http://iopscience.iop.org/0032-1028/