Dynamics of EUV-radiation from the partially contracted plasma diode
The possibility of forming the directional plasma extreme ultraviolet (EUV) radiation under the partial contraction of the current channel by the dielectric insert in a high-current plasma diode is studied. The discharge characteristics and their impact on the dynamics of the radiation in the wavele...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/82235 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dynamics of EUV-radiation from the partially contracted plasma diode / Ya.O. Hrechko, N.A. Azarenkov, V.D. Dimitrova, Ie.V. Borgun, D.L. Ryabchikov, I.N. Sereda, A.V. Hryhorenko, A.F. Tseluyko // Вопросы атомной науки и техники. — 2015. — № 1. — С. 190-193. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-82235 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-822352015-05-28T03:01:50Z Dynamics of EUV-radiation from the partially contracted plasma diode Hrechko, Ya.O. Azarenkov, N.A. Dimitrova, V.D. Borgun, Ie.V. Ryabchikov, D.L. Sereda, I.N. Hryhorenko, A.V. Tseluyko, A.F. Низкотемпературная плазма и плазменные технологии The possibility of forming the directional plasma extreme ultraviolet (EUV) radiation under the partial contraction of the current channel by the dielectric insert in a high-current plasma diode is studied. The discharge characteristics and their impact on the dynamics of the radiation in the wavelength range of 12.2…15.8 nm are studied. The input efficiency of energy in the discharge is higher one in the case of partial contraction of the current channel by the dielectric insert which leads to an increase of the EUV-radiation intensity. Исследована возможность формирования направленного ЭУФ-излучения плазмы при частичном контрагировании токового канала диэлектрической стенкой в сильноточном плазменном диоде. Исследованы разрядные характеристики и их влияние на динамику излучения в диапазоне длин волн 12,2…15,8 нм. Показано, что при частичном контрагировании токового канала диэлектрической стенкой наблюдается более высокая эффективность ввода энергии в разряд, приводящая к увеличению интенсивности ЭУФ-излучения. Досліджено можливість формування спрямованого ЕУФ-випромінювання плазми при частковому контрагуванні струмового каналу діелектричною стінкою в потужнострумовому плазмовому діоді. Досліджені розрядні характеристики та їхній вплив на динаміку випромінювання в діапазоні довжин хвиль 12,2…15,8 нм. Показано, що при частковому контрагуванні струмового каналу діелектричною стінкою спостерігається більш висока ефективність введення енергії в розряд, що призводить до збільшення інтенсивності ЕУФ-випромінювання. 2015 Article Dynamics of EUV-radiation from the partially contracted plasma diode / Ya.O. Hrechko, N.A. Azarenkov, V.D. Dimitrova, Ie.V. Borgun, D.L. Ryabchikov, I.N. Sereda, A.V. Hryhorenko, A.F. Tseluyko // Вопросы атомной науки и техники. — 2015. — № 1. — С. 190-193. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.58.Lq, 52.59.Ye. http://dspace.nbuv.gov.ua/handle/123456789/82235 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Hrechko, Ya.O. Azarenkov, N.A. Dimitrova, V.D. Borgun, Ie.V. Ryabchikov, D.L. Sereda, I.N. Hryhorenko, A.V. Tseluyko, A.F. Dynamics of EUV-radiation from the partially contracted plasma diode Вопросы атомной науки и техники |
description |
The possibility of forming the directional plasma extreme ultraviolet (EUV) radiation under the partial contraction of the current channel by the dielectric insert in a high-current plasma diode is studied. The discharge characteristics and their impact on the dynamics of the radiation in the wavelength range of 12.2…15.8 nm are studied. The input efficiency of energy in the discharge is higher one in the case of partial contraction of the current channel by the dielectric insert which leads to an increase of the EUV-radiation intensity. |
format |
Article |
author |
Hrechko, Ya.O. Azarenkov, N.A. Dimitrova, V.D. Borgun, Ie.V. Ryabchikov, D.L. Sereda, I.N. Hryhorenko, A.V. Tseluyko, A.F. |
author_facet |
Hrechko, Ya.O. Azarenkov, N.A. Dimitrova, V.D. Borgun, Ie.V. Ryabchikov, D.L. Sereda, I.N. Hryhorenko, A.V. Tseluyko, A.F. |
author_sort |
Hrechko, Ya.O. |
title |
Dynamics of EUV-radiation from the partially contracted plasma diode |
title_short |
Dynamics of EUV-radiation from the partially contracted plasma diode |
title_full |
Dynamics of EUV-radiation from the partially contracted plasma diode |
title_fullStr |
Dynamics of EUV-radiation from the partially contracted plasma diode |
title_full_unstemmed |
Dynamics of EUV-radiation from the partially contracted plasma diode |
title_sort |
dynamics of euv-radiation from the partially contracted plasma diode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/82235 |
citation_txt |
Dynamics of EUV-radiation from the partially contracted plasma diode / Ya.O. Hrechko, N.A. Azarenkov, V.D. Dimitrova, Ie.V. Borgun, D.L. Ryabchikov, I.N. Sereda, A.V. Hryhorenko, A.F. Tseluyko // Вопросы атомной науки и техники. — 2015. — № 1. — С. 190-193. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT hrechkoyao dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT azarenkovna dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT dimitrovavd dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT borguniev dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT ryabchikovdl dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT seredain dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT hryhorenkoav dynamicsofeuvradiationfromthepartiallycontractedplasmadiode AT tseluykoaf dynamicsofeuvradiationfromthepartiallycontractedplasmadiode |
first_indexed |
2025-07-06T08:39:48Z |
last_indexed |
2025-07-06T08:39:48Z |
_version_ |
1836886210898821120 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №1(95)
190 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 190-193.
DYNAMICS OF EUV-RADIATION FROM THE PARTIALLY
CONTRACTED PLASMA DIODE
Ya.O. Hrechko
1
, N.A. Azarenkov
1
, V.D. Dimitrova
2
, Ie.V. Borgun
1
, D.L
. Ryabchikov
1
,
I.N. Sereda
1
, A.V. Hryhorenko
1
, A.F. Tseluyko
1
1
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: ievgeniia.borgun@mail.ru;
2
St. Clement Ohridski Sofia University, Sofia, Bulgaria
E-mail: veselina@phys.uni-sofia.bg
The possibility of forming the directional plasma extreme ultraviolet (EUV) radiation under the partial
contraction of the current channel by the dielectric insert in a high-current plasma diode is studied. The discharge
characteristics and their impact on the dynamics of the radiation in the wavelength range of 12.2…15.8 nm are
studied. The input efficiency of energy in the discharge is higher one in the case of partial contraction of the current
channel by the dielectric insert which leads to an increase of the EUV-radiation intensity.
PACS: 52.58.Lq, 52.59.Ye.
INTRODUCTION
Nowadays, the powerful plasma radiation sources
in the extreme ultraviolet range (EUV-radiation) are
intensively developing for nanotechnology [1]. The
input power in such devices achieves up to 500 kW
for the output power of about 500 W! The low
efficiency of system is explained, first of all, by the
low conversion efficiency of the input energy into the
radiation energy. The other reason is the impossibility
(caused by the design features) to collect the all
plasma radiation by the first collecting mirror.
(Generally speaking, the limiting conversion
efficiency is restricted by the value of 2.6% and the
solid angle of the radiation collection is
3…4 steradian). To improve the efficiency of such
system it is preferable to use the directional radiation
source based on the high-current plasma diode [2]. In
this case it is possible to achieve a higher output
power for the same conversion efficiency and the
optimal location of collecting mirror with equal area
The principal moment of the directional radiation
generation in plasma diode is a high density of the
discharge current (up to 1.0 MA/cm
2
) that is provided
by minimization of the electrode working surface
using the dielectric insulation. In the case of the
plasma diode with rapidly rotating (for cooling) non-
insulated disk electrodes it is difficult to receive such
current densities because of the plasma expansion
along the electrode surface. In this paper, the
possibility to obtain the directional radiation for a
system with non-insulated electrodes due to partial
contraction of the current channel by short dielectric
channel is studied. The channel is produced in the
dielectric barrier that completely separates the
discharge gap between two electrodes.
Because of the complexity of the system with
rotating electrodes the experiments are carried out
using the fixed electrodes.
1. SCHEME OF EXPERIMENT
The possibility to use the partial contraction of the
current channel by the dielectric barrier for generating
the directional EUV-radiation from the plasma of
multiply charged tin ions is studied using a direct high
current (up to 35 kA) pulsed low-pressure discharge
(P ~ 3 10
6
Torr).
There are a dielectric insert D, the tubular copper
cathode with three igniters, the copper anode rod A and
the coaxial current feeder in the discharge cell. The
polarity of the electrodes change during the discharge, we
refer to them as to the cathode and anode according to
their polarity at the beginning of the discharge. Schematic
illustration of the discharge cell is shown in Fig. 1. The
discharge gap is completely blocked by a dielectric insert
that has the shape of a glass cup with a hole in the center
of ~ 2 mm in diameter. The cathode has a tubular
configuration for extracting the radiation along the
discharge. To localize the discharge between the
electrodes, the length of the tubular cathode is 4 cm, and
its outer and inner diameter are 1 cm and 0.8 cm,
respectively. The cathode is fixed in the center of the
cathode current-carrying flange 1. The diameter of the rod
electrode is 0.5 cm. The lateral surface of the rod
electrode is covered with ceramic insulator 2 and with
protective ring 3. The protective ring with glass insert sets
the current channel only through the central hole of the
insertion. The cathode surface and the working anode end
face is coated with pure tin layer of 0.05 cm in thickness.
The distance between the cathode and the anode could
vary within 3…10 cm by changing the length of the
conductors 4. Conductors are located inside the glass
insulators. The distance between the anode and the hole
of the glass insert is varied in the range of 0.4÷0.6 cm.
Discharge voltage is supplied to the electrodes by a
coaxial feedthrough.
The discharge is excited between two electrodes
coated with a tin layer after the pre-filling of the discharge
gap by the primary plasma. The dense high-temperature
plasma is produced by the pulsed evaporation of the
electrode surfaces under the influence of the discharge.
The powerful extreme ultraviolet radiation is observed in
the inductive stage of the discharge as a series of short
(100…200 ns) pulse peaks.
ISSN 1562-6016. ВАНТ. 2015. №1(95) 191
2. EXPERIMENTAL RESULTS
In the experimental studies, the ability to generate
directional EUV radiation in the plasma of multiply
ionized tin atoms under the partial contraction of the
current channel by the dielectric insert is
demonstrated. The dynamics of the radiation (both
integrated one and that in the wavelength range of
12.2…15.8 nm) as well as discharge characteristics
are studied. Experiments reveal a number of features
of the flow discharge at partial contraction of the
current channel by the dielectric wall as compared
with an identical uncontracted system. In the case of
partial contraction of the current channel, processes
change significantly in the high-voltage stage of the
discharge. At a considerable distance to the holes, the
dielectric surface is negatively charged and screen the
electric field of the positive rod-shaped electrode. This
reduces the penetration of the primary plasma to the
rod electrodes. In this case, the applied discharge
voltage can be either shifted to the rod electrode
surface or delayed at the dielectric insert hole. But in
both cases, the electron beam power is not enough for
the intensive evaporation of the rod electrode surface
material and the dense plasma formation. It is shown
experimentally that the distance between the insertion
hole and the rod electrode should not exceed 2…3
hole diameters. At large distances, the high-current
inductive discharge is not excited. The stable
discharge excitation is noted for the dielectric channel
with a hole diameter of 0.2 cm, a channel length of
0.5 cm, and when the distance to the electrode end
face is of 0.5 cm. Moreover, the high stability of the
discharge from pulse to pulse is observed. The
difference in the parameters under studying does not
exceed a few percent.
Typical waveforms of the discharge current and
voltage, the plasma radiation intensity in the
wavelength range of 12.2…15.8 nm and photographs
of the discharge gap are shown in Fig. 2. In the
Fig. 2,f, there are shown the location of the rod
electrode (anode A), the tubular electrode (cathode C),
the glass insert (D) and the formation of dense plasma
in the discharge gap.
One can clearly see that in the first half-cycle of the
discharge current oscillations a fairly wide (~ 4 µs)
radiation pulse in the longitudinal direction (see Fig.2,c)
is formed, while in the 3
rd
half-cycle there is a narrow
(~ 0.4 µs) peak pulse. A wide pulse of recombination
radiation is formed under conditions of prolonged (within
the duration of the half-cycle of the discharge current
oscillations) power input. The peak pulses appear during
the short-term additional powerful energy input [3].
Comparing the amplitude of wide pulses in the first half-
cycle for the longitudinal and transverse components of
the radiation intensities (see Fig. 2,c,d) one can say that
intensity in the longitudinal direction of radiation is
2…3 times higher than in the transverse one. It should be
noted that the peak pulses are observed only in the
longitudinal direction.
Fig. 1. Schematic of the discharge cell: A – a rod
electrode (anode), С – a tubular electrode (cathode);
D – a dielectric insert
С
D
0 1 2 3 4 5 6 7 8 9 10
1
2
3 4
5
А
Vdis=10 kV Vdis=12 kV
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-80
-60
-40
-20
0
t,s
I lo
n
g(t
),
m
V
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-25
-20
-15
-10
-5
0
5
t,s
I tr
(t
),
m
V
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-30
-20
-10
0
10
20
30
t,s
I(
t)
,
k
A
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-1
0
1
2
8
9
10
11
V
(t
),
k
V
t,s
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-30
-20
-10
0
10
20
30
t,s
I(
t)
,
k
A
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-80
-60
-40
-20
0
t,s
I lo
n
g
(t
),
m
V
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-25
-20
-15
-10
-5
0
5
t,s
I tr
(t
),
m
V
0.0 5.0µ 10.0µ 15.0µ 20.0µ 25.0µ
-1
0
1
2
9
10
11
12
13
t,s
V
(t
),
k
V
b
c
d
a
f
Fig. 2. Typical waveforms of the discharge current and
voltage, plasma radiation intensity and photos of the
discharge gap:
a – waveforms of the discharge current;
b – waveforms of the discharge voltage;
c – waveforms of the longitudinal radiation intensity in
the range of 12.2…15.8 nm;
d – waveforms of the transversal radiation intensity in
the range of 12.2…15.8 nm;
f – photos of the discharge gap
192 ISSN 1562-6016. ВАНТ. 2015. №1(95)
To identify the processes which underlie the
generation of high-power pulses of plasma radiation in
the range of extreme ultraviolet, the studies of the
dynamics of power input in the discharge are carried
out. Fig. 3 shows the dynamics of the active power
inputted into the discharge. These dependences are
calculated for two cases: in the presence of the
dielectric insert (a) and in the absence of the insert (b).
The solid line shows the experimental active
power inputted into the discharge, the dashed line –
the calculated active power. The appearance of
negative values of the input power is explained by the
methodology accuracy.
One can conclude from analyzing the Fig. 3 that in
the first half-cycle more power is inputted in the case
of the dielectric insert presence than without the insert,
although the experimental values of active power were
the same for the two cases. This is clearly seen on the
Fig. 4 that shows the development of the energy input
into the discharge. Fig. 4 shows the waveforms of the
discharge current and the ratio of the energy input into
the discharge to the energy stored in the capacitor for
two cases: with and without the insert. The figure
shows that 20% of energy more is inputted during the
first half-cycle in the presence of the insert than in the
absence of the insert.
The dense plasma is formed due to the fact that the
electron beam heats the working surface of the anode and
the working material intensively evaporates with its
subsequent ionization. This electron beam is generated in
the electric double layer of the space charge that appears
for a short time in current-carrying plasma in a high-
current plasma diode.
Typically, the double layer occurs under such
conditions that the current-carrying plasma can not
transfer (due to the thermal motion) the entire current
provided by the power supply [4]. The localization of the
double layer is determined by the place where the current-
carrying capacity of the plasma is minimal one [5]. Under
the contraction of the current channel by the dielectric
insert, the power supply current must exceed by 2…3
times the current that plasma can carry through the
dielectric channel. The presence of the dielectric insert
promotes the formation of an additional double layer in
the dense plasma, and the double layer is formed near the
insert hole. Due to the presence of additional double layer
the additional power is inputted into the discharge.
The ratio of the longitudinal and transverse components
of the radiation intensity (the sum for three half-cycles) of
the discharge voltage under the presence of the dielectric
insert is shown on Fig. 5. One can see on this figure that
the longitudinal radiation intensity (the sum for three half-
cycles) is by 3…5 times higher than the transverse one.
Fig. 5. Ratio of the total longitudinal and transverse
component of the radiation intensity versus the
discharge voltage
0 2 4 6 8 10 12
0
1
2
3
4
5
6
P
lo
ng
/P
tr
Vd,kV
Fig. 3. Dynamics of active power input into the
discharge: a) with dielectric insert (a);
without dielectric insert (b)
4.0µ 6.0µ 8.0µ 10.0µ 12.0µ 14.0µ
0
10
20
30
40
50
60
70
P,MW
t,s
experimental active power ;
calculated active power;
b
4.0µ 6.0µ 8.0µ 10.0µ 12.0µ 14.0µ
0
10
20
30
40
50
60
70
P,MW
t,s
experimental active power;
calculated active power;
a
4.0µ 6.0µ 8.0µ 10.0µ 12.0µ 14.0µ
-80
-60
-40
-20
0
20
40
60
80
100
-80
-60
-40
-20
0
20
40
60
80
100
I*
4
,
k
A
W
(t
)/
W
0
,
%
t,s
discharge current I(t)
W(t)/W
0
with insert
W(t)/W
0
witout insert
Fig. 4. Dynamics of energy input into the discharge
ISSN 1562-6016. ВАНТ. 2015. №1(95) 193
Based on this, the dependence of the longitudinal
component of the radiation intensity on the discharge
voltage for the two cases is plotted (see Fig. 6). It is
seen that in the presence of the dielectric insert the
radiation intensity is higher than in its absence. This is
explained by the higher efficiency of the energy input
into the discharge.
CONCLUSIONS
Our experimental studies prove the possibility of
using the partial contraction of the current channel by
the dielectric insert in the high plasma diode for
generating the directional EUV-radiation.
To ensure the efficiency and stable generation of
directional radiation the optimal location and diameter of
the insert hole are determined experimentally.
It is shown that the additional double layer is formed
in the presence of the dielectric insert. And this additional
double layer provides the higher efficiency of the energy
input into the discharge leading to the increase of the
radiation intensity.
REFERENCES
1. M. Yoshioka et al. Tin DPP Source Collector Module
(SoCoMo): Status of Beta products and HVM
developments // Proc. of SPIE. 2010, v. 7636, p. 763610-
1-12.
2. A.F. Tseluyko et al. The dynamics and directions of
extreme ultraviolet radiation from plasma of the high-
current pulse diode // Problems of Atomic Science and
Technology. Series “Plasma Physics” (15). 2009,
№ 1(59), p. 165-167.
3. E.I. Lutsenko, N.D. Sereda, A.F. Tseluyko,
A.A. Bizukov. The dynamic characteristics of the beam-
plasma self-discharge // Ukrainian Journal of Physics.
1988, v. 33, iss. 5, p. 730-736.
4. I.V. Borgun, D.V. Zinov`ev, D.L. Ryabchikov,
A.F. Tseluyko. Hardware-software system for measuring
extreme ultraviolet // Journal of Kharkov University
№925. Series: "Mathematical modeling. Information
Technology. Automated control systems». 2010, v. 14,
p. 28-35.
5. I.V. Borgun et all. Double electric layer influence on
dynamic of EUV radiation from plasma of high-current
pulse diode in tin vapor // Physics Letters A. 2013, v. 377,
p. 307-309.
Article received 11.11.2014
ДИНАМИКА ЭУФ-ИЗЛУЧЕНИЯ В ЧАСТИЧНО КОНТРАГИРОВАННОМ ПЛАЗМЕННОМ ДИОДЕ
Я.О. Гречко, Н.А. Азаренков, В.Д. Димитрова, Е.В. Боргун, Д.Л. Рябчиков,
И.Н. Середа, А.В. Григоренко, А.Ф. Целуйко
Исследована возможность формирования направленного ЭУФ-излучения плазмы при частичном
контрагировании токового канала диэлектрической стенкой в сильноточном плазменном диоде.
Исследованы разрядные характеристики и их влияние на динамику излучения в диапазоне длин волн
12,2…15,8 нм. Показано, что при частичном контрагировании токового канала диэлектрической стенкой
наблюдается более высокая эффективность ввода энергии в разряд, приводящая к увеличению
интенсивности ЭУФ-излучения.
ДИНАМІКА ЕУФ-ВИПРОМІНЮВАННЯ В ЧАСТКОВО
КОНТРАГОВАННОМУ ПЛАЗМОВОМУ ДІОДІ
Я.О. Гречко, М.О. Азарєнков, В.Д. Дімитрова, Є.В. Боргун, Д.Л. Рябчіков,
І.М. Середа, О.В. Григоренко, О.Ф. Целуйко
Досліджено можливість формування спрямованого ЕУФ-випромінювання плазми при частковому
контрагуванні струмового каналу діелектричною стінкою в потужнострумовому плазмовому діоді.
Досліджені розрядні характеристики та їхній вплив на динаміку випромінювання в діапазоні довжин хвиль
12,2…15,8 нм. Показано, що при частковому контрагуванні струмового каналу діелектричною стінкою
спостерігається більш висока ефективність введення енергії в розряд, що призводить до збільшення
інтенсивності ЕУФ-випромінювання.
Fig. 6. The total longitudinal component of the
radiation intensity versus the discharge voltage
0 2 4 6 8 10 12
0
2
4
6
8
10
12
14
16
18
20
without insert
with insert
P
r
tr
,
m
J/
st
ra
d
P
r
lo
n
g,
J/
cm
2
Vd, kV
0
5
10
15
20
25
30
35
|