Coating in the arc discharges with plasma flow filtration
Experimental results of coating deposition with application of an “open architecture” filter to reduce the dropwise component in the discharge [1,2] are presented in this paper. The filter is located in a separate chamber conjugate with the presented system. A curvilinear (with an angle 90°) solen...
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/82292 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Coating in the arc discharges with plasma flow filtration / V. V. Gasilin, V.A. Zavaleyev, Yu. N. Nezovibat’ko, O.M. Shvets, V.S. Taran, E.V. Skorina // Вопросы атомной науки и техники. — 2006. — № 6. — С. 210-212. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-82292 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-822922015-05-28T03:02:23Z Coating in the arc discharges with plasma flow filtration Gasilin, V. V. Zavaleyev, V.A. Nezovibat’ko, Yu. N. Shvets, O.M. Taran, V.S. Skorina, E.V. Low temperature plasma and plasma technologies Experimental results of coating deposition with application of an “open architecture” filter to reduce the dropwise component in the discharge [1,2] are presented in this paper. The filter is located in a separate chamber conjugate with the presented system. A curvilinear (with an angle 90°) solenoid creating a transporting magnetic field [3] is used as the “open architecture” filter. Performing probe measurements of the ion saturation current dependences on the current of focussing coil, pressure of inert gas (argon) and reactionary gas (nitrogen). The measurement results of substrate temperature, deposition rate of coating. Представлены экспериментальные результаты нанесения покрытий PVD методом с применением фильтра «открытой архитектуры» для уменьшения капельной составляющей в разряде [1,2]. Представлен фильтр «открытой архитектуры», помещённый в отдельную камеру, сопряжённую с установкой. В качестве фильтра применяется соленоид, создающий криволинейное (с углом 90°) транспортирующее магнитное поле [3]. С помощью зондовых измерений получены зависимости ионного тока коллектора от изменения: тока фокусирующей катушки, давления инертного газа (аргона) и реакционного газа (азота). Представлены результаты измерения температуры подложки, скорость осаждения покрытия. Представлено експериментальні результати нанесення покрить PVD методом із застосуванням фільтру «відкритої архітектури» для зменшення краплинної складової в розряді [1,2]. Представлено фільтр «відкритої архітектури», який знаходиться в окремій камері, що сполучена з установкою. Як фільтр застосовується соленоїд, що створює криволінійне (з кутом 90°) транспортуюче магнітне поле [3]. За допомогою зондових вимірів отримані залежності іонного струму колектора від змін: струму фокусуючої котушки, тиску інертного газу (аргону) і реакційного газу (азоту). Представлено результати вимірів температури підкладки, швидкість осадження покриття. 2006 Article Coating in the arc discharges with plasma flow filtration / V. V. Gasilin, V.A. Zavaleyev, Yu. N. Nezovibat’ko, O.M. Shvets, V.S. Taran, E.V. Skorina // Вопросы атомной науки и техники. — 2006. — № 6. — С. 210-212. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.77.-j http://dspace.nbuv.gov.ua/handle/123456789/82292 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Gasilin, V. V. Zavaleyev, V.A. Nezovibat’ko, Yu. N. Shvets, O.M. Taran, V.S. Skorina, E.V. Coating in the arc discharges with plasma flow filtration Вопросы атомной науки и техники |
description |
Experimental results of coating deposition with application of an “open architecture” filter to reduce the dropwise
component in the discharge [1,2] are presented in this paper. The filter is located in a separate chamber conjugate with
the presented system. A curvilinear (with an angle 90°) solenoid creating a transporting magnetic field [3] is used as the
“open architecture” filter. Performing probe measurements of the ion saturation current dependences on the current of
focussing coil, pressure of inert gas (argon) and reactionary gas (nitrogen). The measurement results of substrate
temperature, deposition rate of coating. |
format |
Article |
author |
Gasilin, V. V. Zavaleyev, V.A. Nezovibat’ko, Yu. N. Shvets, O.M. Taran, V.S. Skorina, E.V. |
author_facet |
Gasilin, V. V. Zavaleyev, V.A. Nezovibat’ko, Yu. N. Shvets, O.M. Taran, V.S. Skorina, E.V. |
author_sort |
Gasilin, V. V. |
title |
Coating in the arc discharges with plasma flow filtration |
title_short |
Coating in the arc discharges with plasma flow filtration |
title_full |
Coating in the arc discharges with plasma flow filtration |
title_fullStr |
Coating in the arc discharges with plasma flow filtration |
title_full_unstemmed |
Coating in the arc discharges with plasma flow filtration |
title_sort |
coating in the arc discharges with plasma flow filtration |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/82292 |
citation_txt |
Coating in the arc discharges with plasma flow filtration / V. V. Gasilin, V.A. Zavaleyev, Yu. N. Nezovibat’ko, O.M. Shvets, V.S. Taran, E.V. Skorina
// Вопросы атомной науки и техники. — 2006. — № 6. — С. 210-212. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT gasilinvv coatinginthearcdischargeswithplasmaflowfiltration AT zavaleyevva coatinginthearcdischargeswithplasmaflowfiltration AT nezovibatkoyun coatinginthearcdischargeswithplasmaflowfiltration AT shvetsom coatinginthearcdischargeswithplasmaflowfiltration AT taranvs coatinginthearcdischargeswithplasmaflowfiltration AT skorinaev coatinginthearcdischargeswithplasmaflowfiltration |
first_indexed |
2025-07-06T08:48:01Z |
last_indexed |
2025-07-06T08:48:01Z |
_version_ |
1836886717672456192 |
fulltext |
COATING IN THE ARC DISCHARGES
WITH PLASMA FLOW FILTRATION
V. V. Gasilin, V.A. Zavaleyev, Yu. N. Nezovibat’ko, O.M. Shvets, V.S. Taran, E.V. Skorina
Institute of Plasma Physics, NSC Kharkov Institute of Physics and Technology,
Akademicheskaya Str.1, 61108 Kharkov, Ukraine
Experimental results of coating deposition with application of an “open architecture” filter to reduce the dropwise
component in the discharge [1,2] are presented in this paper. The filter is located in a separate chamber conjugate with
the presented system. A curvilinear (with an angle 90°) solenoid creating a transporting magnetic field [3] is used as the
“open architecture” filter. Performing probe measurements of the ion saturation current dependences on the current of
focussing coil, pressure of inert gas (argon) and reactionary gas (nitrogen). The measurement results of substrate
temperature, deposition rate of coating.
PACS: 52.77.-j
1. INTRODUCTION
The vacuum - arc discharge in technologies of
modifying a surface is actively used in various areas of the
industry due to the unique characteristic of deposition
coatings. The important advantage of the vacuum - arc
method is full reproduction of the chemical compound
deposition coating.
One of defects of the vacuum - arc method of deposition
РVD - coatings is the presence in erosive plasma of a
stationary vacuum arc, and therefore in a condensate, the
considerable content of macroparticles (up to 50 %) with
the size drops from 0.1 up to 10 microns and more than [1].
Such quantity of drops in a condensate breaks uniformity of
coatings, increases a coarseness that does not allow
applying this method in nanostructure technologies. The
presence of drops reduces service characteristics, especially
anti-corrosion, antierosive, decorative, optical, etc.
These defects can be removed by various constructions
of magnetic filters. There is a series of papers devoted to
research and applications of magnetoelectric filters, which
technically simplifies realization of the task to decrease the
drop phase in a condensate. In this report we present one of
the versions of “open architecture” filter, which allows us
to reduce the drop phase in the condensate under the task.
2. EXPERIMENT
To increase purity of the vacuum - arc plasma and to
expand possibility of the standard «Bulat - 6» system, the
filter is used, which is placed in the L-shape metal (iron)
tube, one end of which is connected to the working
chamber of the system, while another one is connected to
the source of plasma. A solenoid creating a curvilinear
(with an angle 90°) transporting magnetic field plays a role
of the filter. The solenoid is made of aluminium bar with
the cross-section S = 1.5 cm2 and number of twist being
equal 18. Its average diameter is Dave. = 17 cm. A power of
the solenoid implements from individual source of direct
current by connection of it consistently to the arc discharge
interspace of the source plasma (Fig. 1). The substrate
temperature is measured by a cylindrical copper probe with
the diameter of 8mm and length 10mm, inside of which the
chromel-allimel thermopair is inserted. Measuring of ion
current is carried out with a metal probe (collector) made of
stainless steel with defined diameters.
Fig. 1. 1) vacuum chamber, 2)cathode, 3)stabilizing
winding, 4)focusing solenoid, 5)solenoid,
6)chamber of solenoid, 7) substrate
3. RESULTS AND DISCUSSIONS
Particle passing through the MEP (magnetoelectric
plasmaguide) of the metal plasma is provided by the
presence of the longitudinal magnetic and traversal
electrical fields. Electrons of the magnetized plasma
move along spiral lines of the magnetic field. Ions also
move electrostatically retained by electrons. The ion
component of the plasma goes due to these fields to the
filter exit towards the collector (substrate), while
macroparticles moving straight on get to the wall of
L-shape tube in the trap through the intervals between
the solenoid winding. The particle motion character
through the MEP is described in detail in paper [2].
Dependence of the ion current at the system exit on
the focussing coil current is shown in Fig. 2.
Dependence of ion current at the system exit on the
focussing coil (solenoid) current is measured for the
case of injection of titanium plasma inside the solenoid.
The collector is placed at the distance l = 3 cm from the
end of solenoid. The absence of magnetic field of the
focussing coil and the presence of the maximum field
of the solenoid coil show that the part of ion component
of metal plasma goes to the system exit (I i = 125 mА).
But at If.s = 0 and Is = 0 ion component at the exit is
almost absent (Ii = 0). It allows, before forthcoming
process of a deposition coating, to clear the cathode.
Next stage of the experiment was measurement of
the ion current dependence on gas pressure of argon
and nitrogen.
210 Problems of Atomic Science and Technology. 2006, № 6. Series: Plasma Physics (12), p. 210-212
0,0 0,5 1,0
0
50
100
150
I
SOL
=0
I I , m
A
I
F S.
, А
I
SOL
=70А
Fig. 2. Change of the ion current at the system exit
depending on the focussing coil current Iarc = 110 А;
Usubs= - 150 В, Р = 4×10-5 torr, l=3 cm
The research was carried out for streams of titanium plasma.
The results of the measurement are shown in (Fig. 3a, b).
0
1
2
3
4
5
6
7
8
9
10-210-310-410-5
I i ,
m
A
/с
м
2
P, torr
a) density current
0
50
100
150
I i , m
A
P, torr
b) ionik current
10-2
10-310-410-5
Fig.3. Change of ionic current from pressure a) Ar and b)
N2. Iarc = 110 А; If.s = 0,7 A (120 Oe); Icol = 70A
(40 Oe); Usubs. = - 150 В. l=3 cm
Experiments were carried out with identical parameters for
each gas. One can see from figure that the ion current (density)
at pressure Р = 1×10-3 torr has a strongly pronounced maximum
for both gases. The increase in the ion current is caused by
interaction of the products of cathode erosion with gas. The
decrease of Ii in the region Р > 10-3 torr occurs in the connection
with recombination of the charged particles, as well as with
dissipation of the stream on the gas target.
Measurements of the probe temperature dependence on
time of metal titanium plasma effect on it at pressure of the
residual gas Р = 4×10-5 torr, and at the atmosphere pressure
of argon PAr = 1×10-3 torr are shown in Fig. 4. Readout of
the temperature was performed from the beginning of arc
activation. One can see from figure that at the same time of
deposition probe heating at high is about 30°С. It is much
less than it is at argon atmosphere (180°С). Measurement of
the probe temperature with clearing time in HF-plasma was
carried out as well. The parameters of HF-clearing as
follows PAr = 2·10-3 torr; UHF = - 1 kV; time t = 10 min. The
probe temperature has decreased up to 30°С.
0 1 2 3 4 5
0
50
100
150
200 Р Ar = 1 * 10-3 torr
Т
,
о С
t , min.
Р = 4 * 10-5 torr (without Ar)
Fig. 4. Measurement of the probe temperature
dependence on time of Ti deposition in argon
atmosphere. Iarc = 110 А; If.s = 0,7 A (120 Oe);
Icol = 70 A (H=40 Oe); Usubs. = - 150 В. l=3 cm
To show the distribution of the coating thickness at
the system exit over radius, the glass sample was placed
in the chamber center (10 cm from the solenoid end)
behind which the metal screen is placed. The sample
size is 210 х 240mm. The metal screen was under
HF-voltage through the capacity. Before deposition of
coating, clearing of glass sample in field of
HF-discharge in an atmosphere of argon was
performed. The obtained titanium coating had a good
adhesion and full absence of drops in a condensate, they
were not observed in optical microscope at the increase
of 225 times. Translucent coating has allowed with the
light source and pyrometer to obtain the coating
thickness distribution at the system exit on radius
(Fig. 5).
r ,sm 5510 100
1
0,5
δ .
Fig. 5. Distribution of the thickness of coating at the
system exit on radius
As one can see from the figure, the cross-sectional
distribution of the density of the output plasma stream is
nonuniform, and only a segment with the radius of 3 cm,
located symmetrically relatively to the solenoid axis, has
the uniform coating. If one takes the radius at which the
coating decreases in two times (R = 6 cm), then the
effective cross-sectional area of the stream will be S =
113 cm2. This parameter has a practical significance of
coating deposition with uniform distribution of the
properties on products of the relevant sizes.
Velocity of coating deposition was studied for the
sample made of stainless steel with the size 20×20 mm,
fixed at the distance l = 3cm from the solenoid end.
Clearing was produced in HF - discharge during
t = 10 min. Deposition of coating was carried out in
atmosphere of residual gas Р = 5×10-5torr, and the
cathode of evaporated material (Ti) was used. At the
time of process HF-bias was applied to the sample. The
coating was deposited in pulse mode for 40 minutes
211
(10 seconds of deposition + 10 seconds of pause):
tef = 20 min. Thickness of coating measured by
interferometer is δ = (1.5…2) μkm, corresponding to the
deposition velocity of 5 μkm /hour.
200 300 400 500 600 700
30
35
40
45
50
55
60
65
70
Re
fle
cta
nc
e
.%
Wavelength, nm
a)
SS-316
SS - glass
200 300 400 500 600 700
20
25
30
35
40
45
50
55
60
Wavelength, nm
b)
Re
fle
ct
an
ce
.%
Zr-glass
Zr-reference
Fig.6. Measurement of coating deposition with optical
reflector for а) SS-316, b) Zr
Amount of coating deposition on drop-free with
application the filter of "open architecture" was studied
with optical reflector. To compare, we took the polished
metal samples (12 class of cleanliness) and glass samples
with coating of research metal in range of lengths waves
from 200 up to 700 nm. The metals were Zr, SS-316
stainless steel, the deposition was produce on substrates
from glass by the sizes 20×60 mm. Results of measurement
are shown in Fig. 6 a, b One can see from both figures that
a reflected power polished metal samples less than at
the deposition coating through the filter of «open
architecture», in a condensate presence of drops is not
observed. Therefore, coatings have excellent reflecting
properties. They may be applied in optical and
nanostructures technologies.
4. CONCLUSIONS
We have shown that measurement of the ion current
dependence on gas pressure for argon and nitrogen was
conducted for the streams of titanium plasma. We have
found that under the pressure Р = 1×10-3 torr ion current
(density) has the maximum for both gases. Decreasing
of Ii in the area Р > 10-3 torr, occurs in the connection
with recombination of charged particles, and stream
dissipation in the gas target.
When the currents of the focusing coil and solenoid
are absent, the ion current at the output of the filter
tends to zero. It allows, before forthcoming process of
the coating deposition, to make preliminary clearing of
the cathode and to reduce all operations to unified work
cycle. In the presented experiment, the velocity of
deposition was 5 μkm /hour. Coatings on the glass
samples with application of the cathodes made of
SS-316, Zr are obtained and explored on reflectivity in
the range of wave lengths from 200 up to 700 nm.
Therefore, the coatings have excellent reflecting
properties and may be applied in optical and
nanostructures technologies.
REFERENCES
1. A.A. Andreev, L.P. Sablev, V.M. Shulaev,
S.N. Grigor’ev. The vacuum - arc devices and
coatings. Kharkov: “NSC KIPT”, 2005. p. 32.
2. I.I. Aksenov. Vacuum arc in erosive sources of
plasma. Kharkov: “NSC KIPT”, 2005. p. 110-137.
3.V.V.Gasilin, Yu.N. Nezovibatko et al. Filtred arc
plasma discharge for coatings deposition under Hf
biasing of samples // Applied Plasma Science, 2005,
v. 13, p.87-92.
ПОКРЫТИЯ В ДУГОВОМ РАЗРЯДЕ С ФИЛЬТРАЦИЕЙ ПЛАЗМЕННОГО ПОТОКА
В.В. Гасилин, В.А. Завалеев, Ю.Н. Незовибатько, О.М. Швец, В.С. Таран, Е.В. Скорина
Представлены экспериментальные результаты нанесения покрытий PVD методом с применением фильтра
«открытой архитектуры» для уменьшения капельной составляющей в разряде [1,2]. Представлен фильтр
«открытой архитектуры», помещённый в отдельную камеру, сопряжённую с установкой. В качестве фильтра
применяется соленоид, создающий криволинейное (с углом 90°) транспортирующее магнитное поле [3]. С
помощью зондовых измерений получены зависимости ионного тока коллектора от изменения: тока
фокусирующей катушки, давления инертного газа (аргона) и реакционного газа (азота). Представлены
результаты измерения температуры подложки, скорость осаждения покрытия.
ПОКРИТТЯ В ДУГОВОМУ РОЗРЯДІ З ФІЛЬТРАЦІЄЮ ПЛАЗМОВОГО ПОТОКУ
В.В. Гасилін, В.А. Завалєєв, Ю.М. Незовібатько, О.М. Швець, В.С. Таран, О.В. Скорина
Представлено експериментальні результати нанесення покрить PVD методом із застосуванням фільтру
«відкритої архітектури» для зменшення краплинної складової в розряді [1,2]. Представлено фільтр «відкритої
архітектури», який знаходиться в окремій камері, що сполучена з установкою. Як фільтр застосовується
соленоїд, що створює криволінійне (з кутом 90°) транспортуюче магнітне поле [3]. За допомогою зондових
вимірів отримані залежності іонного струму колектора від змін: струму фокусуючої котушки, тиску інертного
газу (аргону) і реакційного газу (азоту). Представлено результати вимірів температури підкладки, швидкість
осадження покриття.
212
|