Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies
In the paper modified learning algorithm for GMDH-wavelet-neuro-fuzzy-network in information technologies is proposed. For Wavelet-Neuro-Fuzzy-Network structure optimization based on Group Method of Data Handling (GMDH) is developed and the method of structure optimization is described. Such hybrid...
Gespeichert in:
Datum: | 2013 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2013
|
Schriftenreihe: | Індуктивне моделювання складних систем |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/83665 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies / O. Vynokurova // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2013. — Вип. 5. — С. 130-139. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-83665 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-836652015-06-22T03:02:15Z Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies Vynokurova, O. Наукові статті In the paper modified learning algorithm for GMDH-wavelet-neuro-fuzzy-network in information technologies is proposed. For Wavelet-Neuro-Fuzzy-Network structure optimization based on Group Method of Data Handling (GMDH) is developed and the method of structure optimization is described. Such hybrid systems can be used for solving many tasks including signal identification and prediction, person authentication, information classification and clustering, developing pseudo-random generator based on neural networks in cryptography and etc. The experimental investigations were carried out and their results accuracy of data processing by optimally constructed Wavelet-Neuro-Fuzzy-Network and network with multilayer feedforward architecture are presented and compared. У статті запропоновано модифікований алгоритм навчання МГУА-вейлет-нейро-фаззі-мережі для вирішення задач обробки інформації. Для оптимізації структури вейвлет-нейро-фаззі системи запропоновано використовувати Метод Групового Урахування Аргументів (МГУА). Запропонована система дозволяє вирішувати широке коло задач, включаючи ідентифікацію та прогнозування сигналів, автентифікацію користувачів, класифікацію та кластеризацію інформації, розробку псевдо-випадкових генераторів на основі нейромереж в криптографії та інші. Імітаційне моделювання запропонованої архітектури та модифікованого алгоритму навчання підтверджує ефективність запропонованого підходу. В статье предложен модифицированный алгоритм обучения МГУА-вэйвлет-нейро-фаззи сети для решения задач обработки информации. Для оптимизации структуры вэйвлет-нейро-фаззи системы предложено использовать Метод Группового Учета Аргументов (МГУА). Предложенная система позволяет решать широкий круг задач, включая идентификацию и прогнозирование сигналов, аутентификацию пользователей, классификацию и кластеризацию информации, синтез псевдо-случайных генераторов на основе нейросетей в криптографии и другие. Имитационное моделирование предложенной архитектуры и модифицированного алгоритма обучения подтверждает эффективность развиваемого подхода. 2013 Article Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies / O. Vynokurova // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2013. — Вип. 5. — С. 130-139. — Бібліогр.: 14 назв. — англ. XXXX-0044 http://dspace.nbuv.gov.ua/handle/123456789/83665 004.032.26 en Індуктивне моделювання складних систем Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Наукові статті Наукові статті |
spellingShingle |
Наукові статті Наукові статті Vynokurova, O. Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies Індуктивне моделювання складних систем |
description |
In the paper modified learning algorithm for GMDH-wavelet-neuro-fuzzy-network in information technologies is proposed. For Wavelet-Neuro-Fuzzy-Network structure optimization based on Group Method of Data Handling (GMDH) is developed and the method of structure optimization is described. Such hybrid systems can be used for solving many tasks including signal identification and prediction, person authentication, information classification and clustering, developing pseudo-random generator based on neural networks in cryptography and etc. The experimental investigations were carried out and their results accuracy of data processing by optimally constructed Wavelet-Neuro-Fuzzy-Network and network with multilayer feedforward architecture are presented and compared. |
format |
Article |
author |
Vynokurova, O. |
author_facet |
Vynokurova, O. |
author_sort |
Vynokurova, O. |
title |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies |
title_short |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies |
title_full |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies |
title_fullStr |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies |
title_full_unstemmed |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies |
title_sort |
modified learning algorithm for gmdh-wavelet-neuro-fuzzy-network in information technologies |
publisher |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
publishDate |
2013 |
topic_facet |
Наукові статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/83665 |
citation_txt |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies / O. Vynokurova // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2013. — Вип. 5. — С. 130-139. — Бібліогр.: 14 назв. — англ. |
series |
Індуктивне моделювання складних систем |
work_keys_str_mv |
AT vynokurovao modifiedlearningalgorithmforgmdhwaveletneurofuzzynetworkininformationtechnologies |
first_indexed |
2025-07-06T10:28:55Z |
last_indexed |
2025-07-06T10:28:55Z |
_version_ |
1836893063320961024 |
fulltext |
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies
UDC 004.032.26
MODIFIED LEARNING ALGORITHM FOR GMDH-WAVELET-NEURO-
FUZZY-NETWORK IN INFORMATION TECHNOLOGIES
O. Vynokurova
Control System Research Laboratory, Information technologies security department,
Kharkiv National University of Radio Electronics
vinokurova@kture.kharkov.ua
У статті запропоновано модифікований алгоритм навчання МГУА-вейлет-нейро-фаззі-
мережі для вирішення задач обробки інформації. Для оптимізації структури вейвлет-
нейро-фаззі системи запропоновано використовувати Метод Групового Урахування
Аргументів (МГУА). Запропонована система дозволяє вирішувати широке коло задач,
включаючи ідентифікацію та прогнозування сигналів, автентифікацію користувачів,
класифікацію та кластеризацію інформації, розробку псевдо-випадкових генераторів на
основі нейромереж в криптографії та інші. Імітаційне моделювання запропонованої
архітектури та модифікованого алгоритму навчання підтверджує ефективність
запропонованого підходу.
Ключові слова: гібридна МГУА-вейвлет-нейро-фаззі мережа, вейвлет-нейрон,
модифікований алгоритм навчання, МГУА-алгоритми, ідентифікація, прогнозування,
автентифікація
In the paper modified learning algorithm for GMDH-wavelet-neuro-fuzzy-network in
information technologies is proposed. For Wavelet-Neuro-Fuzzy-Network structure
optimization based on Group Method of Data Handling (GMDH) is developed and the method
of structure optimization is described. Such hybrid systems can be used for solving many tasks
including signal identification and prediction, person authentication, information classification
and clustering, developing pseudo-random generator based on neural networks in cryptography
and etc. The experimental investigations were carried out and their results accuracy of data
processing by optimally constructed Wavelet-Neuro-Fuzzy-Network and network with
multilayer feedforward architecture are presented and compared.
Keywords: Hybrid wavelet-neuro-fuzzy-network, wavelet neuron, modified learning
algorithm, GMDH algorithms, information technologies, identification, forecasting,
authentication
В статье предложен модифицированный алгоритм обучения МГУА-вэйвлет-нейро-фаззи
сети для решения задач обработки информации. Для оптимизации структуры вэйвлет-
нейро-фаззи системы предложено использовать Метод Группового Учета Аргументов
(МГУА). Предложенная система позволяет решать широкий круг задач, включая
идентификацию и прогнозирование сигналов, аутентификацию пользователей,
классификацию и кластеризацию информации, синтез псевдо-случайных генераторов на
основе нейросетей в криптографии и другие. Имитационное моделирование
предложенной архитектуры и модифицированного алгоритма обучения подтверждает
еффективность развиваемого подхода.
Ключевые слова: гибридная МГУА-вэйвлет-нейро-фаззи-сеть, вэйвлет-нейрон,
модифицированные метод обучения, МГУА-алгоритмы, информационные технологии,
идентификация, прогнозирование, аутентификация
Індуктивне моделювання складних систем, випуск 5, 2013 130
Vynokurova O.
Introduction
Last years the problem of information processing tasks including identification,
authentication, prediction, clustering, developing pseudo-random generator in
cryptography and etc is of great importance [1-3]. For its solution various approaches
were applied. The most perspective information processing methods are neural
networks, especially a fuzzy neural networks and GMDH methods. Earlier it was
proved that neural networks are universal approximators and have some remarkable
properties, such as parallel processing of information, ability to work with incomplete
noisy input data, and learning possibilities to achieve the desired response (output).
The GMDH [4-6], from the other side, uses the principle of self-organization
that allows to construct an optimal structure of the forecasting model during the
algorithm operation. It’s very promising to combine advantages of these both
approaches for the solution of the problem – constructing an efficient model for the
forecasting in different applications including financial ones.
The goal of the present work is a synthesis of learning algorithm on the turning
points of GMDH-Wavelet-Neuro-Fuzzy-Network based on hybrid criterion.
In [7] GMDH-network with neo-fuzzy nodes using triangular and cubic-spline
activation membership function was introduced. In this paper as nodes of GMDH-
network the wavelet neurons with adaptive membership-activation functions which
have an improved approximation and extrapolation properties in comparison with
neo-fuzzy neuron is proposed. Also the specialized learning algorithm based on
hybrid optimization criterion is introduced.
1. Wavelet neuron architecture
Let us consider wavelet-neuron architecture [8], shown on the Fig.1. As it can
be seen, wavelet neuron is close enough in construction to the neo-fuzzy neuron,
however instead of usual tuning synaptic weights it contains wavelet synapses ,
. In this case tuning parameters are not only synaptic weights , but
center, width and shape parameters of adaptive wavelet membership-activation
function
iWS
=1,2, ,i K n ( )jiw k
( ( ))ji ix kϕ .
When a vector signal
1 2( ) = ( ( ), ( ), , ( )) = ( ( 1), ( 2), , ( ))T T
nx k x k x k x k x k x k x k n− − −K K
i
is fed to the input of wavelet neuron, the output is determined by both the tunable
weights and wavelet membership activation function: ( )jiw k
(1)
1 1 1
ˆ( ) ( ( )) ( 1) ( ( )).
ihn n
i ji ji
i i j
y k f x k w k x kϕ
= = =
= = −∑ ∑∑
Індуктивне моделювання складних систем, випуск 5, 2013 131
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies
�
11( )w k11( )k�
12 ( )k�
�
�
21( )w k
2 2 ( )hw k
22 ( )w k
21( )k�
22 ( )k�
2 2 ( )h k�
�
�
11( )h k�
11( )hw k
12 ( )w k
�
�
�
�
�
�
�
�
2 ( )x k
1( )x k
2 2( ( ))f x k
1 1( ( ))f x k
1WS
2WS
ˆ( )y k
�
1 ( )nw k
( )
nh nw k
2 ( )nw k
1 ( )n k�
2 ( )n k�
( )
nh n k�
�
�
�
�
�
nWS
( )nx k
�
( ( ))n nf x k
Fig. 1. Architecture of wavelet neuron
In this case we use one-dimensional wavelet membership-activation function,
proposed in [9] in the form
2
2 ( )
( ( )) = (1 ( ) ( ))exp ,
2
ji
ji i ji ji
t k
x k k t kϕ α
⎛ ⎞
− −⎜⎜
⎝ ⎠
⎟⎟ (2)
where ( ) 1( ) = ( ) ( ) ( )ji i ji jit k x k c k kσ −− ; is center parameter of wavelet
membership-activation function;
( )jic k
( )ji kσ is width parameter of wavelet membership-
activation function; ( )ji kα – shape parameter of wavelet membership-activation
function.
2. Wavelet neuron learning algorithm
The learning task is to estimate for each iteration synaptic weights ,
centers , widths and shape parameter
k ( )jiw k
( )jic k 1( )ji kσ − ( )ji kα of wavelet membership-
activation function, which optimized some prescribed criteria.
Індуктивне моделювання складних систем, випуск 5, 2013 132
Vynokurova O.
2.1. Learning algorithm for synaptic weights, width parameters, shape
parameters of wavelet membership-activation function
As the criterion of optimization for wavelet neuron synaptic weights, width and
shape parameters of membership-activation function quadratic error function is used
in the form
2 2
=1 =1
1 1 1ˆ( ) = ( ( ) ( )) = ( ) = ( ( ) ( ) ( ( )))
2 2 2
hn i
ji ji i
i j
2E k y k y k e k y k w k x kϕ− −∑∑ (3)
(here – external training signal). ( )y k
The derivatives of the error function with respect to the tuned parameters can
be written in the form
2
2 ( )( ) = ( ) ( ( )) = ( )(1 ( ) ( ))exp = ( ) ( ),
( ) 2
ji w
ji i ij ji ji
ji
t kE k e k x k e k k t k e k J k
w k
ϕ α
⎛ ⎞∂
− − − − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
(4)
3
1
2
( ) = ( ) ( )( ( ) ( ))((2 ( ) 1) ( ) ( ) ( ))
( )
( )
exp = ( ) ( ),
2
ji i ji ji ji ji ji
ji
ji
ji
E k e k w k x k c k k t k k t k
k
t k
e k J ks
a a
s -
¶ - - + - ґ
¶
ж цчз чґ - -з чз ччзи ш
(5)
2
2 ( )( ) = ( ) ( ) ( )exp = ( ) ( ).
( ) 2
ji
ji ji ji
ji
t kE k e k w k t k e k J k
k
α
α
⎛ ⎞∂
− −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
(6)
Introducing ( 1ih )× –vectors of variables
, we can rewrite gradient learning algorithm of -th
wavelet-synapse:
1( ( )) = ( ( ( )), , ( ( ))) ,T
i i i i h i ii
x k x k x kϕ ϕ ϕK 1( ) = ( ( ), , ( )) ,T
i i h ii
w k w k w kK
1 1 1
1( ) = ( ( ), , ( )) ,T
i i h ii
k k kσ σ σ− − −K 1( ) = ( ( ), , ( )) ,T
i i h ii
k k kα α αK 1( ) = ( ( ), , ( )) ,T
i i h ii
t k t k t kK
1( ) = ( ( ), , ( )) ,w w w
i i h ii
J k J k J kK T
i k
1( ) = ( ( ), , ( )) ,T
i i h ii
J k J k J kσ σ σK
1( ) = ( ( ), , ( ))T
i i h ii
J k J k J kα α αK i
(7) 1 1
( 1) = ( ) ( ) ( ) ( ),
( 1) = ( ) ( ) ( ) ( ),
( 1) = ( ) ( ) ( ) ( ).
w w
i i i
i i
i i i
w k w k k e k J k
k k k e k J
k k k e k J k
σ σ
α α
η
σ σ η
α α η
− −
⎧ + +
⎪
+ +⎨
⎪ + +⎩
Індуктивне моделювання складних систем, випуск 5, 2013 133
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies
The convergence rate of learning algorithm can be increased via the use of
Gauss-Newton algorithms [10].
Using the sum of two matrix inversion lemma and performing a sequence of
obvious transformations [11], we can write on-line learning algorithm in the form
2
1 1 2
2
( ) ( )( 1) = ( ) , ( 1) = ( ) ( ) ,
( )
( ) ( )( 1) = ( ) , ( 1) = ( ) ( ) ,
( )
( ) ( )( 1) = ( ) , ( 1) = ( ) ( ) , 0 1
( )
w
w w wi
i i i i iw
i
i
i i i i i
i
i
i i i i i
i
e k J kw k w k r k r k J k
r k
e k J kk k r k r k J k
r k
e k J kk k r k r k J k
r k
σ
σ σ σ
σ
α
α α α
α
β
σ σ β
α α β β
− −
⎧
+ + + +⎪
⎪
⎪⎪ + + + +⎨
⎪
⎪
+ + + + ≤⎪
⎪⎩
P P
P P
P P ,≤
(8)
where β is forgetting factor (0 1β≤ ≤ ).
2.2.The learning algorithm on the turning points for center parameters of
wavelet membership-activation functions
Generally the learning algorithms for neural networks are based on using some
learning error function. But in the situation when the processed signal or process is
significantly non-stationary using such criteria leads to shift effect, which reduces the
accuracy of prediction [12].
For the solving such problem, we need to introduce learning criterion that can
be consider the shift effect of prediction signal.
Fig. 2 shows the fragment of signal with shift effect of predictive value
.
( )y k
ˆ( )y k
Fig. 2. Signal fragment with prediction shift effect
It can be seen on the fig. 2 that, in order to minimizing of shift effect we need
to minimize distance or at the inflection points of the signal, or at the points of
intersection with the axis . It should be noted, that inflection points of and
g
k ( )y k
Індуктивне моделювання складних систем, випуск 5, 2013 134
Vynokurova O.
ˆ( )y k is the intersection axis of ( )y kΔ and ˆ( )y kΔ corresponding (here Δ is symbol of
first difference).
In the prediction theory of economical time series in German literature such
prediction quality criteria as Wegstreke [13, 14] is accepted. This criterion is the
estimation of predicting model quality, when its value 1+ corresponds optimal
predicting model, and when its value 1− corresponds incorrect prediction result. Such
criterion has form
1
1
( )( ( ) ( 1))
( ) ( 1)
N
k
N
k
signal k y k y k
Wegstreke
y k y k
=
=
− −
=
− −
∑
∑
(9)
where ( )signal k is signum function
ˆ1, ( ) ( 1) 0,
ˆ( ) 1, ( ) ( 1) 0,
0 ,
if y k y k
signal k if y k y k
otherwise
− − >⎧
⎪= − − −⎨
⎪
⎩
<
( )y k is the actual value of process; is prediction value; is length of learning
sample.
ˆ( )y k N
Due to the fact, that the sign function is not differentiable, it can be replaced by
a hyperbolic tangent function (see fig. 3) with large steepness parameter
ˆ1 exp( 2 ( ( ) ( 1
1
)))ˆ( ) tanh ( ( ) ( 1)) ,
ˆ1 exp( 2 ( ( ) ( )))
y k y ksignal k y k y k
y k y k
γγ
γ
− − − −
≈ − − =
+ − − −
where γ is steepness parameter, 1γ >> .
Fig. 3. Signum-function (solid, thick line) and hyperbolic tangent function
( 1γ > - dotted line, 1γ = - solid line, 1γ < - dash-dotted line)
Індуктивне моделювання складних систем, випуск 5, 2013 135
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies
Using this hypothesis, we can introduce the learning criterion, which will take
into account the shifting effect of prediction in the form
ˆ(tanh ( ( ) ( 1)))( ( ) ( 1))( )
( ) ( 1)
c y k y k y k y kE k
y k y k
γ − − −
=
− −
− , (10)
and in this case the derivative with respect to the parameter has form ( )jiс k
2
( ) ( ( ) ( 1))
( )
( ( ))
ˆ(1 tanh ( ( ( ) ( 1)))) ( ) .
( )
c
ji
ji i
ji
ji
E k sign y k y k
c k
x k
y k y k w k
c k
γ
ϕ
γ
∂
= − − ×
∂
∂
× − − −
∂
(11)
Using expression (4) we can rewrite learning algorithm on the turning points of
wavelet membership-activation function centers based on gradient procedure in the
form
2
( 1) ( ) ( ( ) ( 1))
(1 tanh ( ( ( ) ( 1)))) ( ( ))
ji ji c
c
ji i
c k c k sign y k y k
y k y k x k
η γ
γ ϕ
+ = − − − ×
× − − −
(12)
where
2
1 3 ( )
( ( )) ( ) ( )((2 ( ) 1) ( ) ( ) ( ))exp
2
jic
ji i ji ji ji ji ji ji
t k
x k w k k k t k k t kϕ σ α α− ⎛ ⎞
= + − ⎜⎜
⎝ ⎠
− ⎟⎟ ,
( )jiw k is synaptic weight of wavelet neuron; cη is learning rate parameter, 0 1cη< < .
Such learning algorithm has enough high speed and computational simplicity,
and main its advantage is possibility of minimizing shift between actual signal and
forecast, that it is important for the solving many practical tasks.
3. Wavelet-Neuro-Fuzzy-Network and its architecture optimization using
the Group Method of Data Handling
Wavelet-Neuro-Fuzzy-Network is a multilayer feedforward architecture that
consists of wavelet neurons. 3-layers Wavelet-Neuro-Fuzzy-Network with n inputs
and m outputs is shown of Fig. 4.
Given architecture is completely coincides with the structure of the 3-layer
perceptron, except that the wavelet neurons are used here as an elementary nodes
instead of usual neurons.
Індуктивне моделювання складних систем, випуск 5, 2013 136
Vynokurova O.
1x
2x
nx
[1]
1WNFN
[1]
2WNFN
1
[1]
nWNFN
[2]
1WNFN
[2]
2WNFN
2
[2]
nWNFN
[3]
1WNFN
[3]
mWNFN
1ŷ
ˆ
my
Fig. 4. GMDH-Wavelet-Neuro-Fuzzy-Network
If we use wavelet neurons that have only two inputs, the GMDH can be applied
for the synthesis of the Wavelet-Neuro-Fuzzy-Network with optimal architecture.
The main idea of the GMDH algorithm lays in successive synthesis of the
neuron layers until the external criterion begins to increase. Algorithm description:
1) Form pairs from the wavelet neuron outputs of the current layer (at the first
iteration we use the set of input signals). Each pair is fed to the corresponding
wavelet neuron.
2) Using the learning subsample to adjust synaptic weight coefficients of each
wavelet neuron.
3) Using the test subsample to calculate the value of the external criterion
(regularity) for each wavelet neuron:
( 2[ ] [ ]
1
1 ˆ( ) ( )
Nпер
s
p
kпер
y k y k
N
ε
=
= −∑ )s
p (13)
where is a size of the test subsample, перN s is the layer number, p is a neuron
number in the current layer
_____
1, sp n= , is the p-th neuron of the s-th layer
response signal for the i-th input vector.
[ ]ˆ ( )s
py k
4) Find the minimal value of the external criteria for all wavelet neurons of the
current layer
[ ] [ ]mins s
pp
ε ε= (14)
and check the condition
[ ] [ 1]s sε ε −> , (15)
Індуктивне моделювання складних систем, випуск 5, 2013 137
Modified Learning Algorithm for GMDH-Wavelet-Neuro-Fuzzy-Network in Information Technologies
where [ ] [ 1],s sε ε − are the criterion values for the best neurons of the and s-th and (s-1)-
th layers correspondingly. If the condition (15) is true then return to the previous
layer and find the best neuron that provides minimal value of the criterion (13).
Otherwise, select F best neurons according to the criterion (13) value and go to
the step 1 to construct the next layer of neurons.
5) Determine the final structure of the network. Moving backward from the
best neuron of the (m-1)-th layer along the input connections and passing
successively all the layers of neurons, preserve in the final structure only such
neurons that are used in the next layer.
After the GMDH finishes its functioning it can be said that the final optimal
structure of the Wavelet-Neuro-Fuzzy-Network is synthesized. As it can be readily
seen we obtain not only optimal structure, but also trained neural network that is
ready to process new data. One of the most important advantages of GMDH usage for
the Wavelet-Neuro-Fuzzy-Network architecture synthesis is a capability to use
simple but quick learning procedures for the wavelet neuron weights adjustment
because network is trained layer-by-layer.
Conclusion
In the paper the modified learning algorithm for GMDH-wavelet-neuro-fuzzy-
network in information technologies is proposed. Using Group Method of Data
Handling algorithms we can synthesize an optimal architecture of the Wavelet-
Neuro-Fuzzy-Network. Theoretical justification and experimental results prove the
efficiency of the developed approach to the Wavelet-Neuro-Fuzzy-Network
architecture self-organization.
References
1. Desai V.V. Pseudo random number generator using time delay neural
network / Desai V.V., Patil R., Deshmukh V.B., Rao D.H. // World Journal of
Science and Technology. – 2012. - 2(10). – P. 165-169.
2. Du K.-L. Neural Networks and Statistical Learning / Du K.-L., Swamy
M.N.S. - Springer-Verlag, London, 2014. – 824 p.
3. Lian S. Secure Hash Function based on neural network / Lian S., Sun J.,
Wang Z. // Neurocomputing. – 2006. – 69(16-18). – P. 2346-2350.
4. Ivakhnenko A.G. Inductive sorting-out GMDH algorithms with polynomial
complexity for active neurons of neural network / Ivakhnenko A.G. // Neural
Networks. – 1999. – 2. – P. 1169-1173.
Індуктивне моделювання складних систем, випуск 5, 2013 138
Vynokurova O.
5. Ivakhnenko A.G. Heuristic self-organization in problems of engineering
cybernetics / Ivakhnenko A.G. // Automatica. – 1970. - 6(2). – P. 207-219.
6. Ivakhnenko A.G. Self-organization of neuro net with active neurons for
effects of nuclear test explosions forecasting // Ivakhnenko A.G. // System Analysis
Modeling Simulation. – 1995. – 20. – P. 107-116.
7. Bodyanskiy Ye. The neo-fuzzy neural network structure optimization using
the GMDH for the solving forecasting and classification problems / Bodyanskiy Ye.,
Zaychenko Yu., Pavlikovskaya E., Samarina M., Viktorov Ye. // Proc. Int.Workshop
on Inductive Modeling, Krynica, Poland. – 2009. – P. 77-89.
8. Bodyanskiy Ye. An adaptive learning algorithm for a wavelet neural
network / Bodyanskiy Ye., Lamonova N., Pliss I., Vynokurova O. // Expert Systems.
– 2005. - 22(5). – P. 235-240.
9. Bodyanskiy Ye. Compartmental adaptive wavelon and its learning
algorithm // Bodyanskiy Ye., Vynokurova O. // Control systems and computers. –
2009. - 1 (219). – P. 47-53 (In Russian).
10. Shepherd A.J. Second-Order Methods for Neural Networks // Shepherd
A.J. - London: Springer-Verlag, 1997. – 145 p.
11. Bodyanskiy Ye. An adaptive learning algorithm for a neuro-fuzzy
network. / Bodyanskiy Ye., Kolodyazhniy V., Stephan A. // Computational
Intelligence and Applications [Ed. by B. Reusch]. Berlin-Heidelberg-New-York:
Springer. - 2001. – P. 68-75.
12. Lekutai G. Self-tuning control of nonlinear systems using neural network
adaptive frame wavelets / Lekutai G., van Landingham H. F. // Proc. IEEE Int. Conf.
on Systems, Man and Cybernetics. 1997. – 2. – P. 1017-1022.
13. Baumann M. Nutzung neuronaler Netze zur Prognose von Aktienkursen /
Baumann M. // Report Nr. 2/96, TU Ilmenau. - 1996. – 113 p.
14. Fueser K. Neuronale Netze in der Finanzwirtshaft / Fueser K. - Wiesbaden:
Gabler. - 1995. – 437 p.
Індуктивне моделювання складних систем, випуск 5, 2013 139
|