Метод решения задачи многоуровневого программирования
The solutions to important applied classes of multilevel programming problem are obtained. It is shown the number of levels in such a problem is endogenous. The role of generalized Cournot–Stackelberg–Nash equilibrium introduced earlier is demonstrated. It is shown the Stackelberg oligopoly problem...
Gespeichert in:
Datum: | 2005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2005
|
Schriftenreihe: | Теорія оптимальних рішень |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/84927 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Метод решения задачи многоуровневого программирования / В.М. Горбачук, С.Г. Ненахова // Теорія оптимальних рішень: Зб. наук. пр. — 2005. — № 4. — С. 73-79. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | The solutions to important applied classes of multilevel programming problem are obtained. It is shown the number of levels in such a problem is endogenous. The role of generalized Cournot–Stackelberg–Nash equilibrium introduced earlier is demonstrated. It is shown the Stackelberg oligopoly problem is reduced to a new class of discrete-continuous problems. The instability of Cournot oligopoly is demonstrated. |
---|