Квазіоптимальне керування в задачах із мінімальною енергією для параболічних рівнянь із нелокальними крайовими умовами
Розглянуто однопараметричне сімейство початково-крайових задач для одновимірного рівняння теплопровідності з нелокальними крайовими умовами, які містять дійсний параметр. Крайові умови цієї задачі не є посилено регулярними за жодного значення параметру. Система власних функцій оператора другої похід...
Gespeichert in:
Datum: | 2013 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Ukrainian |
Veröffentlicht: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2013
|
Schriftenreihe: | Системні дослідження та інформаційні технології |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/85134 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Квазіоптимальне керування в задачах із мінімальною енергією для параболічних рівнянь із нелокальними крайовими умовами / І.С. Лазаренко // Системні дослідження та інформаційні технології. — 2013. — № 4. — С. 52-58. — Бібліогр.: 2 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Розглянуто однопараметричне сімейство початково-крайових задач для одновимірного рівняння теплопровідності з нелокальними крайовими умовами, які містять дійсний параметр. Крайові умови цієї задачі не є посилено регулярними за жодного значення параметру. Система власних функцій оператора другої похідної, підпорядкованого крайовим умовам не утворює базис Ріса в L2(0,1) і не є повною. Для параболічного рівняння з нелокальними крайовими умовами з дійсним параметром розглядається класична задача теорії оптимального керування системами з розподіленими параметрами — керування з мінімальною енергією в спеціальній нормі. В цій роботі вихідну двовимірну задачу з мінімальною енергією замінено двома одновимірними задачами, тобто дано квазіоптимальне наближення розв’язку в задачах із мінімальною енергією для параболічного рівняння з нелокальними крайовими умовами у випадку розподіленого керування зі спеціальним критерієм якості. Застосовуючи метод відокремлення змінних, отримано розв’язок, який представлено у вигляді рядів по біортогональному базису Рісса, які збігаються до неперервних функцій. Проведено порівняльний аналіз оптимального та квазіоптимального керувань. |
---|