Інформаційна технологія кластеризації даних у часовому періоді спостережень

Кластерний аналіз є актуальним напрямом інтелектуального аналізу даних (Data Mining). Застосування методів кластеризації дозволяє зрозуміти структуру багатовимірних даних; спростити подальшу обробку, використовуючи різні методи аналізу для кожного кластера; скоротити вихідну вибірку даних, залишивши...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Байбуз, О.Г., Сидорова, М.Г.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2013
Schriftenreihe:Системні дослідження та інформаційні технології
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/85135
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Інформаційна технологія кластеризації даних у часовому періоді спостережень / О.Г. Байбуз, М.Г. Сидорова // Системні дослідження та інформаційні технології. — 2013. — № 4. — С. 59-66. — Бібліогр.: 11 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Кластерний аналіз є актуальним напрямом інтелектуального аналізу даних (Data Mining). Застосування методів кластеризації дозволяє зрозуміти структуру багатовимірних даних; спростити подальшу обробку, використовуючи різні методи аналізу для кожного кластера; скоротити вихідну вибірку даних, залишивши по одному найбільш типовому представнику кожної групи; виявити новизну, нетипові об’єкти, які не вдається приєднати до жодного з класів; сформулювати або перевірити гіпотези на підставі отриманих результатів. Запропоновано новий підхід до виділення груп об’єктів, схожих між собою за набором ознак, які змінюються у часі. Розроблено інформаційну технологію оцінки якості й підвищення стійкості кластеризації. Представлено результати практичної реалізації запропонованої технології на даних гідрохімічного моніторингу водних об’єктів у районі з підвищеним техногенним навантаженням.