A compact system of inequalities for the standard limits in the theory of limits

The purpose of the paper is an alternative way of obtaining of the standard limits in the elementary theory of limits. The approach uses two double inequalities xe^-x ≤ sin x ≤ xe^x and xe^-x ≤ shx ≤ xe^x and the limit transition. The method is applied to both standard limits simultaneously, t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Mironenko, L.P., Vlasenko, A.Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2013
Назва видання:Искусственный интеллект
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/85162
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A compact system of inequalities for the standard limits in the theory of limits / L.P. Mironenko, A.Yu. Vlasenko // Искусственный интеллект. — 2013. — № 2. — С. 63–70. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-85162
record_format dspace
spelling irk-123456789-851622015-07-22T03:01:58Z A compact system of inequalities for the standard limits in the theory of limits Mironenko, L.P. Vlasenko, A.Yu. Интеллектуальные системы планирования, управления, моделирования и принятия решений The purpose of the paper is an alternative way of obtaining of the standard limits in the elementary theory of limits. The approach uses two double inequalities xe^-x ≤ sin x ≤ xe^x and xe^-x ≤ shx ≤ xe^x and the limit transition. The method is applied to both standard limits simultaneously, that makes the theory more universal. Apart from that our theory gives many new representations of the standard limits (total number is 37). У роботі запропоновано підхід, який забезпечує єдиний засіб отримання стандартних границь у теорії границь. Підхід заснований на використанні нерівностей xe^-x ≤ sin x ≤ xe^x та xe^-x ≤ shx ≤ xe^x і граничному переході в них. Підхід достатньо простий у використанні. Єдина система нерівностей забезпечує одночасне отримання формул першого, другого стандартних границь і, практично, всіх наслідків з них. Більш того, теорія приводить до великої кількості нових наслідків із стандартних границь. В работе предложен единый подход к стандартным пределам в теории пределов. Подход основан на использовании двойных неравенств xe^-x ≤ sin x ≤ xe^x и xe^-x ≤ shx ≤ xe^x и предельном переходе в них. Метод применим к обоим стандартным пределам одновременно, что значительно упрощает общепринятые подходы. Кроме того, получены новые следствия из стандартных пределов. 2013 Article A compact system of inequalities for the standard limits in the theory of limits / L.P. Mironenko, A.Yu. Vlasenko // Искусственный интеллект. — 2013. — № 2. — С. 63–70. — Бібліогр.: 6 назв. — англ. 1561-5359 http://dspace.nbuv.gov.ua/handle/123456789/85162 514.116 en Искусственный интеллект Інститут проблем штучного інтелекту МОН України та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Интеллектуальные системы планирования, управления, моделирования и принятия решений
Интеллектуальные системы планирования, управления, моделирования и принятия решений
spellingShingle Интеллектуальные системы планирования, управления, моделирования и принятия решений
Интеллектуальные системы планирования, управления, моделирования и принятия решений
Mironenko, L.P.
Vlasenko, A.Yu.
A compact system of inequalities for the standard limits in the theory of limits
Искусственный интеллект
description The purpose of the paper is an alternative way of obtaining of the standard limits in the elementary theory of limits. The approach uses two double inequalities xe^-x ≤ sin x ≤ xe^x and xe^-x ≤ shx ≤ xe^x and the limit transition. The method is applied to both standard limits simultaneously, that makes the theory more universal. Apart from that our theory gives many new representations of the standard limits (total number is 37).
format Article
author Mironenko, L.P.
Vlasenko, A.Yu.
author_facet Mironenko, L.P.
Vlasenko, A.Yu.
author_sort Mironenko, L.P.
title A compact system of inequalities for the standard limits in the theory of limits
title_short A compact system of inequalities for the standard limits in the theory of limits
title_full A compact system of inequalities for the standard limits in the theory of limits
title_fullStr A compact system of inequalities for the standard limits in the theory of limits
title_full_unstemmed A compact system of inequalities for the standard limits in the theory of limits
title_sort compact system of inequalities for the standard limits in the theory of limits
publisher Інститут проблем штучного інтелекту МОН України та НАН України
publishDate 2013
topic_facet Интеллектуальные системы планирования, управления, моделирования и принятия решений
url http://dspace.nbuv.gov.ua/handle/123456789/85162
citation_txt A compact system of inequalities for the standard limits in the theory of limits / L.P. Mironenko, A.Yu. Vlasenko // Искусственный интеллект. — 2013. — № 2. — С. 63–70. — Бібліогр.: 6 назв. — англ.
series Искусственный интеллект
work_keys_str_mv AT mironenkolp acompactsystemofinequalitiesforthestandardlimitsinthetheoryoflimits
AT vlasenkoayu acompactsystemofinequalitiesforthestandardlimitsinthetheoryoflimits
AT mironenkolp compactsystemofinequalitiesforthestandardlimitsinthetheoryoflimits
AT vlasenkoayu compactsystemofinequalitiesforthestandardlimitsinthetheoryoflimits
first_indexed 2025-07-06T12:19:27Z
last_indexed 2025-07-06T12:19:27Z
_version_ 1836900017346969600
fulltext ISSN 1561-5359 «Штучний інтелект» 2013 № 2 63 3М UDK 514.116 L.P. Mironenko, A.Yu. Vlasenko Donetsk National Technical University, Ukraine Ukraine, 83000, Donetsk, Аrtema st., 58 A Compact System of Inequalities for the Standard Limits in the Theory of Limits Л.П. Мироненко, А.Ю. Власенко Донецкий национальный технический университет, Украина Украина, 83000, г. Донецк, ул. Артема, 5, Компактная система неравенств для стандартных пределов в теории пределов Л.П. Мироненко, А.Ю. Власенко Донецький національний технічний університет, Україна Україна, 83000, м. Донецьк, вул. Артема, 58 Компактна система нерівностей для стандартних границь у теорії границь The purpose of the paper is an alternative way of obtaining of the standard limits in the elementary theory of limits. The approach uses two double inequalities xx xexxe ≤≤ − sin and xx xeshxxe ≤≤ − and the limit transition. The method is applied to both standard limits simultaneously, that makes the theory more universal. Apart from that our theory gives many new representations of the standard limits (total number is 37). Keywords: theory of limits, standard limits, function, sine, hyperbolic sine, method, inequalities, standard limits, limit transition. В работе предложен единый подход к стандартным пределам в теории пределов. Подход основан на использовании двойных неравенств xx xexxe ≤≤ − sin и xx xeshxxe ≤≤ − и предельном переходе в них. Метод применим к обоим стандартным пределам одновременно, что значительно упрощает общепринятые подходы. Кроме того, получены новые следствия из стандартных пределов. Ключевые слова: теория пределов, стандартные пределы, неравенство, функция, синус, гиперболический синус, двойное неравенство. У роботі запропоновано підхід, який забезпечує єдиний засіб отримання стандартних границь у теорії границь. Підхід заснований на використанні нерівностей xx xexxe ≤≤ − sin та xx xeshxxe ≤≤ − і граничному переході в них. Підхід достатньо простий у використанні. Єдина система нерівностей забезпечує одночасне отримання формул першого, другого стандартних границь і, практично, всіх наслідків з них. Більш того, теорія приводить до великої кількості нових наслідків із стандартних границь. Ключові слова: теорiя границь, стандартні границі, функція, синус, гіперболічний синус, нерівність, граничний перехід. Mironenko L.P., Vlasenko A.Yu. «Искусственный интеллект» 2013 № 2 64 3М А Introduction The standards limits in mathematical analysis are known as the first and second fundamental (standard) limits. They are used mainly for the determination of derivatives of the elementary functions xx aexx ,,cos,sin . Thus it is built the standard table of derivatives in differential calculus [1], [2]. The standard limits are used practically in all branches of mathematics, also for calculation of an entire class of limits. Each of the fundamental limits is proved by two different ways. The first standard limit is based on a limit procedure in the trigonometric circle. For the second limit it is used Newton’s binomial. Each of the approaches is effective and attractive. Nevertheless they are not universal [1], [2]. Meanwhile there are universal methods for an obtaining of the limits. For example, the first and second limits can be connected one with another by Euler’s formula [3]. The next universal method of proof is based on the undetermined coefficient method which allows find limits by the standard expansion of the functions xsin and x e [4]. At last there are the approaches that like to the proposal method in the paper. They are based also on inequalities and the limiting in the inequalities. Such methods have some disadvantages that are connected with difficulties of the proof of the inequalities. This is one of the serious disadvantages of the theory. According to the logic of our consideration the inequalities must be proved by elementary mathematical methods. Other words, the proof must be performed without using of a derivative concept. We found a simple method to proof the standard limits. This method is based on a specified inequality system and a limiting in the system. The approach may be applied to both limits simultaneously. The proof of each inequality is simple and clear. Besides from the inequalities we have got new important corollaries from the second standard limit. 1 The basic theorem of the method The main theorem that we use in our theory is well-known theorem about a function )(xf which is enclosed between two given functions )( 1 xf and )( 2 xf [5], [6]. Theorem. If in any vicinity of the point o x a function )(xf is satisfied to the inequalities )()()( 21 xfxfxf ≤≤ (1) and axfxf oo xxxx == →→ )(lim)(lim 21 then the limit )(lim xf o xx→ exists and it is equal toa . It is clear, if the function )(xf is continuous at o xx = , then )( o xfa = . The inequalities (1) have a very important property of symmetry, if all functions of the inequalities are odd. We will replace in the inequalities x to x− )()()()()()( 2121 xfxfxfxfxfxf ≥≥⇒−≤−≤− . The sings of the inequalities (1) have changed. If the functions are even )()()()()()( 2121 xfxfxfxfxfxf ≤≤⇒−≤−≤− , The sings of the inequalities (1) have not changed. Corollary. If in the inequalities (1) )()( 1 xxgxf = , )()( 2 xxxf ϕ= and at 0= o x 1)(lim)(lim 00 == →→ xxg xx ϕ , i.e. )()()( xxxfxxg ϕ≤≤ , (2) then 1 )( lim 0 = → x xf x . A Compact System of Inequalities ... «Штучний інтелект» 2013 № 2 65 3М We will use the corollary for proof of the standard limits. Besides we will need in the generalization of the corollary. If 1)(lim)(lim 00 == →→ xxg xx αϕα and )()()( xxxfxxg αϕαααα ≤≤ , (3) then there αα = → )(lim 0 xf x for any 0≠α . 2 The basic Inequalities for standard limits The trigonometric and hyperbolic sine functions are satisfied to the inequalities (Fig.1).     ≤≤ ≤≤ − − .sinh ,sin xx xx xexxe xexxe (4) Figure 1– The graphs of the functions of the inequalities (4) Dividing the inequalities at 0>x we get       ≤≤ ≤≤ − − . sinh , sin xx xx e x x e e x x e We take a limit at 0→x . Accounting that 1limlim 00 == → − → x x x x ee we find according to the corollary .1 sinh lim ,1 sin lim 00 == →→ x x x x xx (5) The first formula is called the first standard (fundamental) limit, the second represents one of the options of the second standard limit. The formulas (5) are obtained by the assumption of 0+→x although they are written for an arbitrary 0→x . Evidently the equalities (5) do not change at 0−→x . It is clear from that all functions are between of the functions x xe − and x xe . The functions xsin and shx are odd. Therefore for the negative values of x we have xxxx e x x ee x x e ≥≥≥≥ −− sinh , sin . Taking the limit at 0−→x we have the equalities (5) again. The figure (Fig. 1) demonstrates the inequalities (4) geometrically. You can see how the inequalities (2) are changed when the point x changes the sign. All graphs of the functions of the inequalities (4) are enclosed by the graphs only two functions x xe − and x xe (Fig. 1.). It means that the limits (5) do not depend on 0+→x or 0−→x . You can see from the figure also how instead of inequalities (4) we may work with the inequalities Mironenko L.P., Vlasenko A.Yu. «Искусственный интеллект» 2013 № 2 66 3М А ,sinhsin xx xexxxe ≤≤≤ − (6) from which also the limits (5) are followed. Here we have one more thing. The inequalities (4) need to proof of four inequalities but the inequalities (6) only of three. For this reason the inequalities (6) are more favorable. The proof of the inequalities is given in the appendix. 3 Corollaries from the fundamental limits The corollaries of the fist fundamental limit are well-known and they are described in many books. We represent the corollaries in the table (Tab. 1) without of a detailed proof. Table 1 – The corollaries from the first and second fundamental limits First standard limit 1 sin lim 0 = → x x x Second standard limit 1 sinh lim 0 = → x x x Replacement or changing of the variable Result Replacement or changing of the variable Result yx arcsin= 1 arcsin lim 0 = → x x x yax sinh= 1 sinh lim 0 = → x xa x x x x cos sin tan = , 1coslim 0 = → x x 1 tan lim 0 = → x x x x x x cosh sinh tanh = , 1coshlim 0 = → x x 1 tanh lim 0 = → x x x yx arctan= 1 arctan lim 0 = → x x x yax tanh= 1 tanh lim 0 = → x xa x In the table the corollaries from the second limit are represented also. They look like the corresponding corollaries from the first limit. These corollaries are new. Therefore we will consider the proof of the corollaries in details: 1 cosh 1 lim sinh lim tanh lim 000 == →→→ xx x x x xxx , where 1 cosh 1 lim 0 = → xx . In the limit 1 sinh lim 0 = → x x x we substitute yx sinh= . Then, 0→y at 0→x and we have 1 sinh lim/1 sinh lim sinh lim 000 === →→→ y y y y x xa yyx . In the equality 1 tanh lim 0 = → x x x we replace yx tanh= . Then 0→y at 0→x , we get 1 tanh lim/1 tanh lim tanh lim 000 === →→→ y y y y x xa yyx . To find the connection of 1 sinh lim 0 = → x x x with the known corollaries from the second fundamental limit we may do it at least two ways. For example, we can use the definition of the function x ee x xx − − =sinh : x e x e x ee x x x x x x xx xx 1 lim 2 11 lim 2 1 lim 2 1sinh lim 0000 − − − = − = − →→ − →→ . In the second limit we replace x by y− . As a result we have y e x e y y x x 1 lim 1 lim 00 − −= − → − → . From where A Compact System of Inequalities ... «Штучний інтелект» 2013 № 2 67 3М x e x x x xx 1 lim sinh lim 00 − = →→ . (7) The second way is based on the representation x x xa − + = 1 1 ln 2 1 tanh [5]. ( ) ( ) x x x x x x xx xa xxxx − − + = − + = →→→→ 1ln lim 2 11ln lim 2 1 . 1 1 ln 1 lim 2 1tanh lim 0000 . In the last equality we replace yx −→ , we get ( ) ( ) y y x x yx − −= − →→ 1ln lim 1ln lim 00 . From where ( ) . 1ln lim tanh lim 00 x x x xa xx + = →→ (8) New representation of second fundamental limit we will find from the representation ( )1lnsinh 2 ++= xxxa [5]. ( ) ( ) .11lnlim1ln 1 lim sinh lim /1 2 0 2 00 =++=++= →→→ x xxx xxxx xx xa Where from ( ) 11ln 1 lim 2 0 =++ → xx xx , ( ) exx x x =++ → /1 2 0 1lim . (9) In the last equality we replace yx /1= , we get e x x x x =         ++ ∞→ 11 lim 2 . (10) The formulas (9) and (10) are new in mathematical analysis. Other corollaries from the second fundamental limit follow by corresponding substitutions in the formulas (7) and (8). The results are represented in the tab 2. Table 2 – The corollaries from the second fundamental limit 1 sinh lim 0 = → x x x An option of the second standard limit Substitution or transformation Corollary 1 1 lim 2 1 lim 2 lim sinh lim 0 2 0 00 = − = = − = →→ − →→ x x x x xx xx ex e x ee x x 1 1 lim 0 = − → x e x x 1 sinh lim 0 = → x x x 2 sinh xx ee x − − = 1 2 lim 0 = − − → x ee xx x 1 1 lim 0 = − → x e x x )1ln( xx += 1 )1ln( lim 0 = + → x x x 1)1ln(lim /1 0 =+ → x x x ex x x =+ → /1 0 )1(lim 1)1ln(lim /1 0 =+ → x x x , yx /1= ex x x =+ ∞→ )/11(lim 1 )1ln( lim 0 = + → x x x axx ln→ a x ax x ln )ln1ln( lim 0 = + → a x ax x ln )ln1ln( lim 0 = + → aax x x ln)ln1ln(lim /1 0 =+ → aax x x =+ → /1 0 )ln1(lim Mironenko L.P., Vlasenko A.Yu. «Искусственный интеллект» 2013 № 2 68 3М А aax x x =+ → /1 0 )ln1(lim yx /1= aax x x =+ ∞→ )ln/11(lim 1 tanh lim 0 = → x xa x x x xa − + = 1 1 ln 2 1 tanh 2 1 1 ln 1 lim 0 = − + → x x xx 2 1 1 ln 1 lim 0 = − + → x x xx 2 1 1 lnlim /1 0 =      − + → x x x x 2 /1 0 1 1 lim e x x x x =      − + → yx /1= 2 1 1 lim e x x x x =      − + ∞→ 2 1 1 log log 1 lim /1 0 =      − + → x a a x x x e e x x a x a x log2 1 1 loglim /1 0 =      − + → 2 1 1 lnlim /1 0 =      − + → x x x x 2 1 1 log log 1 lim /1 0 =      − + → x a a x x x e , yx /1= e x x a x a x log2 1 1 loglim =      − + ∞→ 1 sinh lim 0 = → x xa x       ++= 1lnsinh 2 xxxa 11ln 1 lim 2 0 =      ++ → xx xx 11ln 1 lim 2 0 =      ++ → xx xx 11lnlim /12 0 =      ++ → x x xx exx x x =      ++ → /1 2 0 1lim exx x x =      ++ → /1 2 0 1lim yx /1= e x x x x =         ++ ∞→ 11 lim 2 11ln 1 lim 2 0 =      ++ → xx xx 11log log 1 lim 2 0 =      ++ → xx ex a a x exx x aa x log1log 1 lim 2 0 =      ++ → 1 tanh lim 0 = → x x x xx xx ee ee x − − + − =tanh 1 1 lim 0 = + − − − → xx xx x ee ee x 3 The elementary generalization of the theory The system of the inequalities (6) can be generalized by the replacement xx ⋅→α . For definiteness we put 0>α , although the theory will be fair for any 0:≠α     ≤≤ ≤≤ − − .sinh ,sin xx xx xexxe xexxe αα αα ααα αα (11) Applying the corollary from the theorem (3) to the inequality (11), accounting that 1limlim 00 == → − → x x x x ee , we have . sinh lim , sin lim 00 α α α α == →→ x x x x xx (12) The first formula can be called the fist general fundamental limit, the second is an option of the second general limit. Using the results of the table 1 we get immediately . tanh lim , tanh lim , sinh lim , sinh lim , arctan lim , tan lim , arcsin lim , sin lim 0000 0000 α α α α α α α α α α α α α α α α ==== ==== →→→→ →→→→ x xa x x x xa x x x x x x x x x x xxxx xxxx . (13) For the second limit we choose aln=α . Then we will get new equalities (Tab. 3). A Compact System of Inequalities ... «Штучний інтелект» 2013 № 2 69 3М Table 3 – The corollaries from the limit a x xa x ln )sinh(ln lim 0 = ⋅ → An option of the second standard limit Substitution or transformation Corollary a ax a x aa x xash x x x x xx xx ln 1 lim 2 1 lim 2 lim )(ln lim 0 2 0 00 = − = = − = ⋅ →→ − →→ a x a x x ln 1 lim 0 = − → α α = → x xsh x )( lim 0 , aln=α 2 xx ee shx αα − − = , aln=α a x aa xx x ln 2 lim 0 = − − → a x a x x ln 1 lim 0 = − → )1(log xx a += a x x a x ln )1(log lim 0 = + → α α = → x xarth x )( lim 0 x x xarth α α α − + = 1 1 ln 2 1 , aln=α a ax ax xx ln2 ln1 1ln ln 1 lim 0 = ⋅− +⋅ → a ax ax xx ln2 ln1 1ln ln 1 lim 0 = ⋅− +⋅ → a ax ax x x ln2 ln1 1ln lnlim /1 0 ⋅=      ⋅− +⋅ → 2 /1 0 ln1 1ln lim a ax ax x x =      ⋅− +⋅ → yx /1= 2 ln ln lim a ax ax x x =      − + ∞→ a ax ax x x ln2 ln1 1ln lnlim /1 0 ⋅=      ⋅− +⋅ → a ax ax e x a a x ln2 ln1 1ln log log 1 lim /1 0 ⋅=      ⋅− +⋅ → 2 ln1 1ln loglim /1 0 =      ⋅− +⋅ → x a x ax ax 2 ln1 1ln loglim /1 0 =      ⋅− +⋅ → x a x ax ax yx /1= 2 ln ln loglim =      − + ∞→ x a x ax xa       ++= 1ln 22 αα xxarshx , aln=α a axax xx ln 1lnlnln 1 lim 22 0 = =      ++⋅ → α α = → x xarsh x 0 lim ααα =      ++ → x x xx /1 22 0 1lnlim , aln=α a axax x x = =      ++⋅ → /1 22 0 1lnlnlim a axax x x = =      ++⋅ → /1 22 0 1lnlnlim yx /1= a x axa x x =         ++ ∞→ 22 lnln lim a axax x x ln 1lnlnlnlim /1 22 0 = =      ++⋅ → ea axax ex a a a x log/1ln 1lnlnlog log 1 lim 22 0 == =      ++⋅ → 1 1lnlnlog 1 lim 22 0 = =      ++⋅ → axax x a x α α = → x xth x 0 lim xx xx ee ee thx − − + − = , aln=α a aa aa x xx xx x ln 1 lim 0 = + − − − → APPENDIX 1. The proof of the inequalities (4) 0≥x     ≤≤ ≤≤ − − .sinh ,sin xx xx xexxe xexxe . To the first inequality we apply the well-known inequality xx ≤sin . Then x xexx ≤≤sin . The last inequality is obvious because 1≥⇒≤ xx exex . Mironenko L.P., Vlasenko A.Yu. «Искусственный интеллект» 2013 № 2 70 3М А For proving the inequality xxe x sin≤ − we replace x by x− . we have ( )xxe x −≤− sin . We use the property ( ) xx sinsin −=− . Multiplying the inequality xxe x sin−≤− by the factor 1− we have the previous inequality x xex ≤sin . To the second inequality (4) we apply the inequality xe x ≥−1 . The second inequality (4) is proved like the first, only instead of the inequality xx ≤sin we will use the inequality xe x ≥−1 . 122 2 sinh 22 −≤≤⇒≤ − = − − xxx xx exxexe ee x . we have the obvious inequality 122 22 ≤⇒≤ −− xx exxe . For the proving of the inequality x xex ≤sinh we replace x by x− . We have x xex − −≤− )sinh( . We use the property ( ) xx sinhsinh −=− . Multiplying the inequality x xex − −≤− sinh by the factor 1− we return to the proved inequality x xex − ≥sinh . APPENDIX 2. The proof of the inequalities .sinhsin xx ≤ We replace the left part of the inequality by a value x that is more then xsin , we get xx sinh≤ or xx eex − −≤2 . We rewrite the inequality in the form 012 2 ≥−− xx xee . The roots of the equation are 1 2 +±= xxe x . The negative root we omit because 0> x e . Geometrically we have a parabola 12 2 −−= xx xeey respect to x e . The parabola is touched the axis x only at the point 0=x , the branches of the parabola are directed up, i.е. 0>y . Therefore the inequality 012 2 ≥−− xx xee is fulfilled for any x . Corollary. 2 1 2 x xe x ++≥ . Here it is used the inequality 2/11 22 xx +≤+ which is checked by raising both parts of the inequality into square. Results 1) It is developed a new effective method of the proof of the first and second fundamental limits in the classical limit theory. 2) The approach generalizes usual theory of the fundamental limits and from our point of view the theory is more simple and effective. 3) The approach is generalized that leads to many equivalent forms of the limits (from the first limit we have got 3 corollaries, from the second limits 34). The most of them are new. 4) The proposed method improves the classical theory of the fundamental limits. Literature 1. Kudriavtsew L.D. Маtematichesky analiz. Том I., Nаukа,1970. – 571 p. 2. Ilyin V.А., Pozdniak E.G. Оsсnowy mаtematicheskogo analiza, tом 1, Izd. FML, Моskwa, 1956. – 472 p. 3. Mironenko L.P. Ekvivalentnost standartnih predelov v teoryi predelov// Iskustvenyi intellekt, 2, 2012 – P. 123-128. 4. Mironenko L.P., Petrenko I.V. Standartnie predeli i metod neopredelennih koefficientov// skustvenyi intellekt, 3, 2012 – P. 284-291. 5. Fihtengolts G.М. Кurs differentsialnogo i integralnogo ischislenia, tом 1, Nauka, «FML», 1972. – 795 p. 6. Gursa E. Кurs mаtematicheskogo analiza, tом 1, Gosudarstvennoe techniko-tworcheskoe iezdatelstvo – Моskwa, 1933. – 368 p. Статья поступила в редакцию 02.04.2013.