Classification of the necessary tests of convergence in the theory of numerical series

The paper suggests three types of the necessary tests for the convergence of numerical series with positive terms. It is shown that these tests are consequences of the limit test of comparison with respect to the standard series: harmonic and logarithmic ones. The new tests have different capabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Mironenko, L.P., Petrenko, I.V., Vlasenko, A.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем штучного інтелекту МОН України та НАН України 2013
Schriftenreihe:Искусственный интеллект
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/85220
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Класифікація необхідних умов збіжності в теорії числових рядів / L.P. Mironenko, I.V. Petrenko, A.Yu Vlasenko // Искусственный интеллект. — 2013. — № 3. — С. 294–299. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-85220
record_format dspace
spelling irk-123456789-852202015-07-23T03:02:06Z Classification of the necessary tests of convergence in the theory of numerical series Mironenko, L.P. Petrenko, I.V. Vlasenko, A.Yu. Интеллектуальные системы планирования, управления, моделирования и принятия решений The paper suggests three types of the necessary tests for the convergence of numerical series with positive terms. It is shown that these tests are consequences of the limit test of comparison with respect to the standard series: harmonic and logarithmic ones. The new tests have different capabilities and can be applied to almost any series, whose terms form a monotone sequence. У роботі запропоновані три види необхідних ознак збіжності числових рядів з додатними членами. Показано, що ці ознаки є наслідками застосування граничного ознаки порівняння зі стандартними рядами: гармонічним та логарифмічним. Нові ознаки збіжності мають різні можливості і можуть застосовуватися практично до будь-яких рядах, члени яких утворюють монотонну послідовність. В работе предложены три вида необходимых признаков сходимости числовых рядов с положительными членами. Показано, что эти признаки являются следствиями применения предельного признака сравнения к стандартным рядам: гармоническому и логарифмическому. Новые признаки сходимости имеют различные возможности и могут применяться практически к любым рядам, члены которых образуют монотонную последовательность. 2013 Article Класифікація необхідних умов збіжності в теорії числових рядів / L.P. Mironenko, I.V. Petrenko, A.Yu Vlasenko // Искусственный интеллект. — 2013. — № 3. — С. 294–299. — Бібліогр.: 6 назв. — англ. 1561-5359 http://dspace.nbuv.gov.ua/handle/123456789/85220 514.116 en Искусственный интеллект Інститут проблем штучного інтелекту МОН України та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Интеллектуальные системы планирования, управления, моделирования и принятия решений
Интеллектуальные системы планирования, управления, моделирования и принятия решений
spellingShingle Интеллектуальные системы планирования, управления, моделирования и принятия решений
Интеллектуальные системы планирования, управления, моделирования и принятия решений
Mironenko, L.P.
Petrenko, I.V.
Vlasenko, A.Yu.
Classification of the necessary tests of convergence in the theory of numerical series
Искусственный интеллект
description The paper suggests three types of the necessary tests for the convergence of numerical series with positive terms. It is shown that these tests are consequences of the limit test of comparison with respect to the standard series: harmonic and logarithmic ones. The new tests have different capabilities and can be applied to almost any series, whose terms form a monotone sequence.
format Article
author Mironenko, L.P.
Petrenko, I.V.
Vlasenko, A.Yu.
author_facet Mironenko, L.P.
Petrenko, I.V.
Vlasenko, A.Yu.
author_sort Mironenko, L.P.
title Classification of the necessary tests of convergence in the theory of numerical series
title_short Classification of the necessary tests of convergence in the theory of numerical series
title_full Classification of the necessary tests of convergence in the theory of numerical series
title_fullStr Classification of the necessary tests of convergence in the theory of numerical series
title_full_unstemmed Classification of the necessary tests of convergence in the theory of numerical series
title_sort classification of the necessary tests of convergence in the theory of numerical series
publisher Інститут проблем штучного інтелекту МОН України та НАН України
publishDate 2013
topic_facet Интеллектуальные системы планирования, управления, моделирования и принятия решений
url http://dspace.nbuv.gov.ua/handle/123456789/85220
citation_txt Класифікація необхідних умов збіжності в теорії числових рядів / L.P. Mironenko, I.V. Petrenko, A.Yu Vlasenko // Искусственный интеллект. — 2013. — № 3. — С. 294–299. — Бібліогр.: 6 назв. — англ.
series Искусственный интеллект
work_keys_str_mv AT mironenkolp classificationofthenecessarytestsofconvergenceinthetheoryofnumericalseries
AT petrenkoiv classificationofthenecessarytestsofconvergenceinthetheoryofnumericalseries
AT vlasenkoayu classificationofthenecessarytestsofconvergenceinthetheoryofnumericalseries
first_indexed 2025-07-06T12:23:10Z
last_indexed 2025-07-06T12:23:10Z
_version_ 1836900250795638784
fulltext ISSN 1561-5359 «Искусственный интеллект» 2013 № 3 294 4M UDK 514.116 L.P. Mironenko, I.V. Petrenko, A.Yu. Vlasenko Donetsk National Technical University, Ukraine, 83000, Donetsk, Аrtema str., 58 Classification of the Necessary Tests of Convergence in the Theory of Numerical Series Л.П. Мироненко, И.В. Петренко, А.Ю. Власенко Донецкий национальный технический университет, Украина Украина, 83000, г.Донецк, ул. Артема, 58 Классификация необходимых условий сходимости в теории числовых рядов Л.П. Мироненко, I.B. Петренко, А.Ю. Власенко Донецький національний технічний університет, Україна Україна, 83000, м. Донецьк, вул. Артема, 58 Класифікація необхідних умов збіжності в теорії числових рядів The paper suggests three types of the necessary tests for the convergence of numerical series with positive terms. It is shown that these tests are consequences of the limit test of comparison with respect to the standard series: harmonic and logarithmic ones. The new tests have different capabilities and can be applied to almost any series, whose terms form a monotone sequence. The obtained necessary tests for the convergence of numerical series have more opportunities, than the accepted standard one .0lim = ∞→ n n u Keywords: limit, L’Hospital’s rule, series, convergence, divergence, test of comparison of series, harmonic series, logarithmic series and geometric progression series. В работе предложены три вида необходимых признаков сходимости числовых рядов с положительными членами. Показано, что эти признаки являются следствиями применения предельного признака сравнения к стандартным рядам: гармоническому и логарифмическому. Новые признаки сходимости имеют различные возможности и могут применяться практически к любым рядам, члены которых образуют монотонную последовательность. Полученные признаки имеют более широкие возможности, чем стандартный необходимый признак сходимости рядов .0lim = ∞→ n n u Ключевые слова: предел, правило Лопиталя, сходимость, расходимость, признак сравнения рядов, гармонический ряд, логарифмический ряд, ряд геометрической прогрессии. У роботі запропоновані три види необхідних ознак збіжності числових рядів з додатними членами. Показано, що ці ознаки є наслідками застосування граничного ознаки порівняння зі стандартними рядами: гармонічним та логарифмічним. Нові ознаки збіжності мають різні можливості і можуть застосовуватися практично до будь-яких рядах, члени яких утворюють монотонну послідовність. Отримані ознаки мають більш широкі можливості, ніж стандартна необхідна ознака збіжності рядів .0lim = ∞→ n n u Ключові слова: границя, правило Лопіталя, збіжність, розбіжність, ознака порівняння рядів, гармонічний ряд, логарифмічний ряд, ряд геометричної прогресії. Classification of the Necessary Tests of Convergence in the Theory of Numerical Series «Штучний інтелект» 2013 № 3 295 4M Introduction The necessary tests for the convergence of series play an important practical role in the evaluation of the convergence and divergence of numerical series with non-negative terms. It is believed that they are negative, because they can only define the divergence of the series. If the necessary tests are violated, we can definitely affirm the divergence of the series. If they are satisfied, the question of convergence can be finally resolved only by sufficient tests for the convergence of series [1]. First of all, these are tests of comparison with the standard series, such as the series of geometric progression, generalized harmonic series and generalized logarithmic series [2]. In the theory of the numerical series the test of comparison of series with positive terms commonly used in two forms - in the finite form and in the limit form [3]. In the first case, the two series are compared. The first series is 0 , 1 ≥∑ ∞ = n n n uu (1) and the second series is 0 , 1 ≥∑ ∞ = n n n vv . If there is a number 0>M such that, starting from a certain numberN , the inequality nn vMu ⋅≤ takes place and the series ∑ ∞ =1n n v converges, then the series ∑ ∞ =1n n u converges too. But if the series ∑ ∞ =1n n u diverges, then the series ∑ ∞ =1n n v diverges also. [1] In the limit test of comparison the expression nn n vu /lim ∞→ is considered. If the series 0 . 1 >∑ ∞ = n n n vv converges, and the limit value is equal to ∞<C or 0C = , then the series ∑ ∞ =1n n u converges also. If the series ∑ ∞ =1n n v diverges, and the size of the limit is equal to 0C ≠ orC =∞ , then the series ∑ ∞ =1n n u diverges also [3], [4]. The series of comparison is usually taken from the three standard series: the harmonic one with the general term nv n /1= , the generalized harmonic one with the general term α nv n /1= and the series of geometric progression with the general term n n qv = . 1 The Necessary Test for the Convergence of Series in the Classical Approach Theorem. If the series (1) 0 , 1 ≥∑ ∞ = nn n uu converges, then the limit of the general term of the series is zero .0lim = ∞→ n n u (2) Proof. If the series (1) converges, then there is a finite limit of the sequence of partial sums ∑ = = k n nk us 1 , where ss k k = ∞→ lim . The same limit is the limit of the sequence of partial sums 1 { } k s − , where ss k k = − ∞→ 1 lim . Then we have ( ) 0limlim 1 =−=−= − ∞→∞→ ssssu nn n n n . Consequence. The series 0 , 1 ≥∑ ∞ = nn n uu diverges at 0lim ≠ ∞→ n n u . Remark. The condition 0lim = ∞→ n n u is not the sufficient condition for the convergence of series (1), so it is usually used to establish the divergence of the series. Mironenko L.P., Petrenko I.V., Vlasenko A.Yu. «Искусственный интеллект» 2013 № 3 296 4M Examples. 1. The series 1 1 2 1 n n n ∞ = − + ∑ diverges, since 0 2 1 1 1 lim ≠= + − ∞→ n n n . 2. The series 2 1 1 (2 1) n n n ∞ = − + ∑ is given. The necessary test (2) of convergence is perfor- med, since 0 )12( 1 lim 2 = + − ∞→ n n n , but the conclusion about the convergence of the series cannot be done. It is necessary to use any sufficient test of convergence. 3. The series 2 1 1 (2 1) ln( 1) n n n n ∞ = − + + ∑ is given. The necessary test (2) of convergence is performed, since 0 )1ln()12( 1 lim 2 = ++ − ∞→ nn n n . As in the previous example, the conclusion about the convergence of the series cannot be done. 2 The Necessary Test for the Convergence of Series Compared with Divergent Series 1. The necessary test of convergence of the series in comparison with the harmonic series. Let us write the limit test of comparison of any arbitrary series (1) with respect to the harmonic series 1 , , 1/ : n n n v v n ∞ = =∑ n n n n n n n un n u v u ⋅== ∞→∞→∞→ lim /1 limlim . Consider all the possible values of this limit. lim lim 0 0 n n n n n u n u С v→∞ →∞ ∞    = ⋅ = ≠      (3) It is known that the harmonic series diverges. If this limit is equal to ∞or 0С ≠ , then the series (1) diverges. If the limit is equal to 0, then the series (1) either converges or diverges. So the test of comparison of series in the limit form works. Let us change the statement of the problem. Now assume that the series (1) converges. Then the first two values of the limit (3) ∞or 0С ≠ are not possible, because they disagree to the assumption that the series (1) converges. So remains only the third option, which is equal to zero. This case should be understood as the necessary test for convergence of the series (1). 0lim =⋅ ∞→ n n un . (4) Thus, it has been established from the limit comparison test with respect to the harmonic series, that the new necessary test for the convergence of the series in the form (4) is much "stronger" than the standard one in the form (2). Examples. 2. The series 2 1 1 (2 1) n n n ∞ = − + ∑ is given. The necessary test for the convergence of the series in the form (4) is not performed, since 2 1 1 lim . (2 1) 4n n n n→∞ − ⋅ = + Hence the series diverges. Above in Example 2, when the necessary test (2) was applied to the same series, the conclusion of convergence of the series was impossible. Classification of the Necessary Tests of Convergence in the Theory of Numerical Series «Штучний інтелект» 2013 № 3 297 4M 3. The series∑ ∞ = ++ − 1 2 )1ln()12( 1 n nn n is given. The necessary test for the convergence of the series in the form (4) is performed, since 0 )1ln()12( 1 lim 2 = ++ − ∞→ nn n n n , but the conclusion of the convergence of this series cannot be done. Remark. The necessary test (4) works only for series, whose terms form a monotone sequence, i.e. 1+ > nn uu . Otherwise the limit (4) may not exist. For example, in the series 1 n n u ∞ = ∑ with the general term    ≠ = = 2 22 0 /1 mnat mnatm u n the terms n u do not form a monotone sequence. For this series the limit (4) does not exist. 4. The necessary test of convergence of the series in comparison with the logarithmic series. Let us write the limit test of comparison of any arbitrary series (1) with respect to the logarithmic series 1 , , 1/ ln : n n n v v n n ∞ = =∑ n n n n n n n unn nn u v u ⋅== ∞→∞→∞→ lnlim ln/1 limlim . (5) Repeat the same reasoning as for the harmonic series. It is known that this logarithmic series diverges. Suppose that the series (1) converges. The values ∞ or 0С ≠ of the limit (5) are not possible, since they contradict to the assumption of convergence of the series (1). Remains only one option - the limit (5) is zero. The latter case is to be understood as the necessary test for the convergence of the series (1): 0lnlim =⋅⋅ ∞→ n n unn . (6) Thus, from the limit comparison test of series was established the second new necessary test for the convergence of series in the form (6), which is “stronger”, than test (4). Example. 5. The series ∑ ∞ = ++ − 1 2 )1ln()12( 1 n nn n is given. The necessary test for the convergence of the series in the form (6) is not performed, since 4 1 )1ln()12( 1 lnlim 2 = ++ − ∞→ nn n nn n . Hence the series diverges. Above, in Examples 2 and 5, the necessary tests (2) and (4) were applied, but the conclusion of the convergence of series could not be done. 3 The Other Representations of Necessary Tests for Convergence Of Series Let us designate the series (1) thus nn n n uw w /1, 1 1 =∑ ∞ = . Then the first necessary test for the convergence of the series (2) will be: 0 1 lim = ∞→ n n w ; ∞= ∞→ n n wlim . (7) So the second necessary test for convergence of series (4) will be 0lim = ∞→ n n w n . From Mironenko L.P., Petrenko I.V., Vlasenko A.Yu. «Искусственный интеллект» 2013 № 3 298 4M the necessary test (2) it follows ∞→ n w . Therefore, there is indeterminacy }/{ ∞∞ , which will be disclosed by L’Hospital’s rule n n n n n n ww n w n ′ = ′ ′ = ∞→∞→∞→ 1 limlimlim . As a result, we came to the modification of the second necessary test for convergence of series in the form: 0 1 lim = ′∞→ n n w или .lim ∞=′ ∞→ n n w (8) The third necessary test for convergence of series (4) will be 0 ln lim = ∞→ n n w nn . From the necessary test (2) it follows ∞→ n w .Then there is indeterminacy }/{ ∞∞ , which can be disclosed by L’Hospital’s rule ( )lnln 1 1 lim lim lim lim lim lim 0 n n n n n n n n n n nn n n n w w nw w→∞ →∞ →∞ →∞ →∞ →∞ ′ = = = = ′ ′ ′ . As a result it is obtained that the third modified necessary test for convergence of series coin- cides with the second modified necessary test for convergence of series (8). However, this third necessary test for convergence of series can be expressed via the second derivative: ( ) . 1 lim ln lim ln lim 1 limlnlimlimlnlim ln lim n n n n n n n nn n nn n n wnw n w n w n w n n w nn ′′ = ′′ ′ = ′ = ′ = ′ ′ = ∞→∞→∞→∞→∞→∞→∞→∞→ As a result we came to the modification of the third necessary test for convergence of series in the form: 0 1 lim = ′′∞→ n n wn or ∞=′′ ∞→ n n wnlim . The obtained results can be tabulated (Table). Table 1 – Classification of the necessary conditions for convergence of series with positive terms A comparison series 1 n n u ∞ = ∑ Necessary test Other forms of necessary test 1 1/ n n w ∞ = ∑ Necessary test opportunities ∑ ∞ =1 1 n 0lim = ∞→ n n u ∞= ∞→ n n wlim light Harmonic series ∑ ∞ =1 /1 n n 0lim = ∞→ n n nu 0 1 lim = ′∞→ n n w или ∞=′ ∞→ n n wlim medium Logarithmic series ∑ ∞ =1 ln/1 n nn 0lnlim =⋅ ∞→ n n unn 0 1 lim = ′∞→ n n w или 0 1 lim = ′′∞→ n n wn strong In Table 1 the notions light, medium, strong are relative because intermediate variants and the expansion of the table to the strongest notation are possible. For example, the logarithmic series of the second order creates stronger necessary test for the conver- gence of series ( ) 0lnlnlnlim =⋅⋅⋅ ∞→ n n unnn , than 0lnlim =⋅⋅ ∞→ n n unn . Summarizing the results of this paper, it is possible to formulate the theorem on the necessary condition for the convergence of numerical series with positive terms. Theorem. If the series 1 , 0, n n n u u ∞ = ≥∑ 1+ > nn uu converges, and 0 , 1 >∑ ∞ = n n n vv is an Classification of the Necessary Tests of Convergence in the Theory of Numerical Series «Штучний інтелект» 2013 № 3 299 4M arbitrary divergent series, then the condition 0lim = ∞→ n n n v u is the necessary condition for the convergence of the initial series∑ ∞ =1n n u . If the general term of the series n v to take equal to1 , n/1 or nn ln/1 it will give us the necessary conditions for the convergence of the series presented in the table (Table 1). Findings This paper describes three types of the necessary tests of convergence of numerical series with positive terms. Thus 1. It is shown that these tests are the consequences of the application of the limit test of comparison to the standard series: geometric, harmonic and logarithmic ones. 2. These new necessary tests of the convergence of numerical series have different capabilities and can be applied to almost any series with positive terms, whose terms form a monotone sequence. 3. The obtained necessary tests have more opportunities than the accepted standard necessary test of convergence of numerical series (2). 4. It is shown that the necessary test for the convergence of numerical series in the standard form 0lim = ∞→ n n u can be successfully replaced by more powerful new necessary tests for the convergence of numerical series, which are the next: 0lim = ∞→ n n nu , 0lnlim =⋅ ∞→ n n unn , ( ) 0lnlnlnlim =⋅⋅⋅ ∞→ n n unnn etc. 5. These results can be transferred to the improper integrals. Literatura 1. Кудрявцев Л.Д. Математический анализ / Кудрявцев Л.Д. – М.: Наука,1970. – Том I. – 571 с. 2. Евграфов М.А. Ряды и интегральные представления / М.А. Евграфов // Современные проблемы математики. Фундаментальные направления. – Т. 13. – 1986. – 260 с. 3. Ильин В.А. Основы математического анализа, том 1 / Ильин В.А., Поздняк Э.Г. – М. : Изд-во ФМЛ, Москва, 1956. – 472 с. 4. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления / Фихтенгольц Г.М. –- М. : Наука, Изд-во ФМЛ, 1972. – Т. 2. – 795 с. 5. Apostol T.M. Calculus. One-Variable Calculus with an Introduction to Linear Algebra / Apostol T.M. –– John Wilay and Sons, Inc., 1966. – Vol 1. – 667 with. 6. Wrede R., Spiegel M. Theory and Problems of Advanced Calcolus / R. Wrede, M. Spiegel. – Schaum’s Series, The MacGraw-Hill Companies Inc. 2002 (First Edition 1966), 433. Literature 1. Kudryavtsev L.D. Маtematichesky analiz. Том I., Nаukа,1970 - 571 p. 2. Yevgrafov M.A. Ryady i integralniye predstavleniya –Sovremennye problem matematiki. Fundamentalniye napravleniya, T.13, 1986. 260 p. 3. Ilyin V.А., Pozdniak E.G. Оsсnowy mаtematicheskogo analiza, tом 1, Izd. FML, Моskva, 1956. – 472 p. 4. Fihtengolts G.М. Кurs differentsialnogo i integralnogo ischislenia, tом 2, Nauka, «FML», 1972 - 795 p. 5. Apostol T.M. Calculus. One-Variable Calculus with an Introduction to Linear Algebra. Vol 1. – John Wilay and Sons, Inc., 1966, 667 with. 6. Wrede R., Spiegel M. Theory and Problems of Advanced Calcolus. – Schaum’s Series, The MacGraw- Hill Companies Inc. 2002 (First Edition 1966), 433. The paper is received by the edition 26.04.2013.