Graph analysis of underground transport networks
The methodic of city subway networks analysis on the basis of graph characteristics (centrality, connectivity and shape) is proposed. The subways characteristics were calculated from subways indexes (number of lines, number of stations, length of lines in kilometers, ridership per year) and from...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем штучного інтелекту МОН України та НАН України
2014
|
Назва видання: | Искусственный интеллект |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/85293 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Graph analysis of underground transport networks / L. Sarycheva, K. Sergieieva // Искусственный интеллект. — 2014. — № 4. — С. 58–70. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-85293 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-852932015-07-25T03:01:31Z Graph analysis of underground transport networks Sarycheva, L. Sergieieva, K. Интеллектуальные системы планирования, управления, моделирования и принятия решений The methodic of city subway networks analysis on the basis of graph characteristics (centrality, connectivity and shape) is proposed. The subways characteristics were calculated from subways indexes (number of lines, number of stations, length of lines in kilometers, ridership per year) and from indicators of cities urbanization (area and population). The interrelation between graph (road) structures and weights of their edges, and between π -index describing the shape of the graph and the number of passengers is demonstrated. It is shown on a practical example that the analysis of structure of proposed road network graphs can be useful in determining the sequence of new roads construction. Clustering of underground transport networks based on characteristics of network graph structure was performed for the first time. Запропоновано методику аналізу міських мереж метрополітенів на основі характеристик графів (центральність, зв'язність і форма). Значення характеристик розраховані на основі індексів метрополітенів (кількість ліній, кількість станцій, протяжність ліній в кілометрах, пасажиропотік на рік) і показників урбанізації міст (площа та чисельність населення). Продемонстровано взаємозв'язок між структурою графів транспортних мереж, вагою їх дуг і π -індексом для опису форми графа і кількості пасажирів. На практичному прикладі показано, що аналіз структури представлених графів транспортних мереж може використовуватися для визначення послідовності етапів будівництва нових ліній. Вперше виконано кластеризацію транспортних підземних мереж на основі характеристик структури графа мережі. Предложена методика анализа городских сетей метрополитенов на основе характеристик графов (центральность, связность и форма). Значения характеристик рассчитаны на основе индексов метрополитенов (количество линий, количество станций, протяженность линий в километрах, пассажиропоток в год) и показателей урбанизации городов (площадь и численности населения). Показана взаимосвязь между структурой графов транспортных сетей, весом их дуг и π -индексом для описания формы графа и количества пассажиров. На практическом примере показано, что анализ структуры представленных графов транспортных сетей может использоваться для определения последовательности этапов строительства новых линий. Впервые выполнена кластеризация транспортных подземных сетей на основе характеристик структуры графа сети. 2014 Article Graph analysis of underground transport networks / L. Sarycheva, K. Sergieieva // Искусственный интеллект. — 2014. — № 4. — С. 58–70. — Бібліогр.: 14 назв. — англ. 1561-5359 http://dspace.nbuv.gov.ua/handle/123456789/85293 519.711:004.8 en Искусственный интеллект Інститут проблем штучного інтелекту МОН України та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Интеллектуальные системы планирования, управления, моделирования и принятия решений Интеллектуальные системы планирования, управления, моделирования и принятия решений |
spellingShingle |
Интеллектуальные системы планирования, управления, моделирования и принятия решений Интеллектуальные системы планирования, управления, моделирования и принятия решений Sarycheva, L. Sergieieva, K. Graph analysis of underground transport networks Искусственный интеллект |
description |
The methodic of city subway networks analysis on the basis of graph characteristics (centrality, connectivity and
shape) is proposed. The subways characteristics were calculated from subways indexes (number of lines, number of
stations, length of lines in kilometers, ridership per year) and from indicators of cities urbanization (area and
population). The interrelation between graph (road) structures and weights of their edges, and between π -index
describing the shape of the graph and the number of passengers is demonstrated. It is shown on a practical example
that the analysis of structure of proposed road network graphs can be useful in determining the sequence of new roads
construction. Clustering of underground transport networks based on characteristics of network graph structure was
performed for the first time. |
format |
Article |
author |
Sarycheva, L. Sergieieva, K. |
author_facet |
Sarycheva, L. Sergieieva, K. |
author_sort |
Sarycheva, L. |
title |
Graph analysis of underground transport networks |
title_short |
Graph analysis of underground transport networks |
title_full |
Graph analysis of underground transport networks |
title_fullStr |
Graph analysis of underground transport networks |
title_full_unstemmed |
Graph analysis of underground transport networks |
title_sort |
graph analysis of underground transport networks |
publisher |
Інститут проблем штучного інтелекту МОН України та НАН України |
publishDate |
2014 |
topic_facet |
Интеллектуальные системы планирования, управления, моделирования и принятия решений |
url |
http://dspace.nbuv.gov.ua/handle/123456789/85293 |
citation_txt |
Graph analysis of underground transport networks / L. Sarycheva, K. Sergieieva // Искусственный интеллект. — 2014. — № 4. — С. 58–70. — Бібліогр.: 14 назв. — англ. |
series |
Искусственный интеллект |
work_keys_str_mv |
AT sarycheval graphanalysisofundergroundtransportnetworks AT sergieievak graphanalysisofundergroundtransportnetworks |
first_indexed |
2025-07-06T12:30:12Z |
last_indexed |
2025-07-06T12:30:12Z |
_version_ |
1836900693442560000 |
fulltext |
ISSN 1561-5359 «Искусственный интеллект» 2014 № 4 58
3S
УДК 519.711:004.8
L. Sarycheva, K. Sergieieva
National Mining University
Karl Marks ave., 19, 49005, Dnepropetrovsk, Ukraine
Graph Analysis of Underground Transport Networks
Л.В. Сарычева, Е.Л. Сергеева
ГВУЗ «Национальный горный университет»
пр. Карла Маркса, 19, 49005, Днепропетровск, Украина
Анализ графов транспортных подземных сетей
Л.В. Саричева, К.Л. Сергєєва
ДВНЗ «Національний гірничий університет»
пр. Карла Маркса, 19, 49005, Дніпропетровськ, Україна
Аналіз графів транспортних підземних мереж
The methodic of city subway networks analysis on the basis of graph characteristics (centrality, connectivity and
shape) is proposed. The subways characteristics were calculated from subways indexes (number of lines, number of
stations, length of lines in kilometers, ridership per year) and from indicators of cities urbanization (area and
population). The interrelation between graph (road) structures and weights of their edges, and between π -index
describing the shape of the graph and the number of passengers is demonstrated. It is shown on a practical example
that the analysis of structure of proposed road network graphs can be useful in determining the sequence of new roads
construction. Clustering of underground transport networks based on characteristics of network graph structure was
performed for the first time.
Keywords: graph analysis, transport network, underground, GIS
Предложена методика анализа городских сетей метрополитенов на основе характеристик графов (центральность,
связность и форма). Значения характеристик рассчитаны на основе индексов метрополитенов (количество
линий, количество станций, протяженность линий в километрах, пассажиропоток в год) и показателей урба-
низации городов (площадь и численности населения). Показана взаимосвязь между структурой графов
транспортных сетей, весом их дуг и π -индексом для описания формы графа и количества пассажиров.
На практическом примере показано, что анализ структуры представленных графов транспортных сетей
может использоваться для определения последовательности этапов строительства новых линий. Впервые
выполнена кластеризация транспортных подземных сетей на основе характеристик структуры графа сети.
Ключевые слова: анализ графов, транспортные сети, метрополитен, ГИС
Запропоновано методику аналізу міських мереж метрополітенів на основі характеристик графів (центральність,
зв'язність і форма). Значення характеристик розраховані на основі індексів метрополітенів (кількість ліній,
кількість станцій, протяжність ліній в кілометрах, пасажиропотік на рік) і показників урбанізації міст (площа та
чисельність населення). Продемонстровано взаємозв'язок між структурою графів транспортних мереж, вагою їх
дуг і π -індексом для опису форми графа і кількості пасажирів. На практичному прикладі показано, що аналіз
структури представлених графів транспортних мереж може використовуватися для визначення послідовності
етапів будівництва нових ліній. Вперше виконано кластеризацію транспортних підземних мереж на основі
характеристик структури графа мережі.
Ключові слова: аналіз графів, транспортні мережі, метрополітен, ГІС
Introduction
Researches on applying graph theory to analyze transportation networks have been
carrying out since the 1960-s till the present days. The most famous works were published by
David Levinson, Mike Batty, Paul Longley etc.
Graph Analysis of Underground Transport Networks
«Штучний інтелект» 2014 № 4 59
3S
Analysis of transport networks graphs involves solving problems:
− forecasting and evaluating transport network growth [1, 2];
− studying the influence of transport network structure and topology on quantitative
indicators of traffic flows [3];
− investigation of dependence of network structure from the size of cities ground
transportation and urban structure [4];
− construction of dynamic models of urban systems using GIS technologies based
on cellular automata, agent-based modeling and fractal analysis [5, 6, 7];
− investigation relationships between quantitative indicators of transport network
structure and its performance, density and urban spatial pattern, and the trips distance for early
solution of transport problems etc.
The up-to-date researches don’t pay enough attention to network bandwidth analysis
depending on the parameters of structure of the network graph. This aspect is investigated
in the paper.
Basic Definitions
Graph ( )E,VG is a pair of two sets – non-empty set of nodes V and an assemblage E
of unordered pairs of distinct elements of V set [8]: ( ), ; , 0, .G V E V E v E V V= ≠ ∈ ×
Pairs of the E assemblage are called as ribs. The number of nodes of a graph G is denoted
as n and the number of edges – m ( ) ( )( ) ( ) ( ), : ,n n G m m G n G V m G E= = = = ,
where ,V E – ,V E cardinal number. Assume that 21 v,v – nodes, ( )21 v,ve = –
edge between them.
Maximum distance for a given graph G is called as diameter:
)v,u(dmax)G(D
Gv,u ∈
= .
The set of nodes at the same distance g from the node v is called as tier:
{ }g)u,v(dVu)g,v(D =∈= . The distance matrix ( ) n,...,2,1j,i,d j,i = of the Ggraph
is defined as: ( )jij,i v,vdd = .
Characteristics of Graph Structure
The principle characteristics of graph structure are its centrality, connectivity and
shape. Centrality characterizes the positionality of graph nodes. Absolute index iS of the
iv node accessibility is the sum of distances from this node to other nodes [9, 10]:
∑=
j
iji dS .
The *iv node is called a central if it possesses the smallest absolute value of
reachability index i
ni1
i
SminS *
≤≤
= .
The König's number jK is also the absolute index of the node
i
v reachability:
ij
nj1
i dmaxK
≤≤
= .
The central *iv node possesses the least König's number: i
ni1
j KminK *
≤≤
= .
L. Sarycheva, K. Sergieieva
«Искусственный интеллект» 2014 № 4 60
3S
The degree of deviation of the i -th node from the central one:
*i
i
i
S
S
=η .
The index of hierarchy ( )*
iii v,vdy = shows the topological distance from the central
node. Nodes with the same values of index of hierarchy form a tier. Centrality is useful for
analysis of centers location of local or regional entities, transportation nodes. A measure of
centrality on the set of centralities { }iS of graph nodes is integration of:
∑∑ ==
i
i
j,i
ij S
2
1
d
2
1
S .
The
*
i
S index of centrality of the center node defines the graph unipolarity:
i
ni1
i
SminS *
≤≤
= .
The variance on a set of central nodes describes the graph centralization:
*i
i
*ii nSS2)SS(H −=−= ∑ .
The territory of the city consists of finite sets of objects: the set of enterprises,
buildings, roads, etc. The essence of the territorial community consists in existing
mathematical relationships between these objects. The configuration of line-node structure
of territory objects placement and relationship is modeled using graphs [11]. For example,
structures simulated by graphs in Fig. 1 describe three stages of territory development:
initial (a), medium (b), ripe (c) on a qualitative level.
Figure 1 – Graphs model for three stages of the territory development: initial (a),
medium (b) and ripe (c)
Connected graph is modeling the structure of urban subway and road network. The
graph is connected if there is a path from any node to any other.
The graph connectivity parameters characterize it intenseness with ribs and degree of
triangulation. The best known of them are three connectivity parameters – α ,β ,ϕ -indexes:
10;
5n2
knm
<α<
−
+−
=α ; (1)
30;
n
m
≤β≤=β ; (2)
10;
)2n(3
m
≤ϕ≤
−
=ϕ , (3)
where m , n , k are the number of edges, nodes and graph connected components
respectively.
To calculate the graph shape parameters the matrix ( ) 1n,...,2,1j,n,...,2,1i,M ij −==µ=
of ordinal vicinity can be used:
{ }ithe number of vicinal vertices of the j-th order for the node v
ij
µ = ,
а) b) c)
Graph Analysis of Underground Transport Networks
«Штучний інтелект» 2014 № 4 61
3S
where vicinal nodes of the j -th order for node iv are nodes of the ( )j,ivD tier
(neighbors of the 1-st order – adjacent nodes). For example, the sequence neighborhood
matrixes for graphs from Fig. 1(a), Fig. 1(b), Fig. 1(c) are represented in Fig. 2.
111111
011112
001122
000222
001122
011112
111111
000222
001122
000123
000132
000033
000123
001221
000133
000133
000133
000006
000133
000133
000133
a) b) c)
Figure 2 – Sequence neighborhood matrix for graphs from Fig. 1
If two graphs possess same number of nodes the more compact of them is the one
having more zero columns in the M matrix. The graph on Fig.1(c) is more compact than
the graphs in Fig.1(a) and Fig.1(b) (2 times and 4/3 times, respectively).
The ratio of the graph edges total length P to its diameter D determines the shape of
the graph described by π -index: D/P=π .
Table 1 present values of the observed parameters for 3 graph model shown in Fig. 1.
Table 1 – Parameters of graphs structures shown in Fig. 1.
Graph Centrality
S1=S7=21
S2=S6=16
S3=S5=13
S4=12
i
*
=4
К1=К7=6
К2=К6=5
К3=К5=4
К4=3
η1=η7=1,8
η2=η6=1,3
η3=η5=1,0
η4=1
γ1=γ7=3
γ2= γ6=2
γ 3= γ5=1
γ 4=0
S=56
Si*=12
H=28
S1=15
S2= S6=13
S3=9, S4=14
S5=10
S7=12
i*=3
К1=К2=4
К4=К6=4
К5=К7=3
К2=2
η1=1,7
η2=η6=1,4
η3=1
η4=1,6
η5=1,1
η7=1,3
γ1=γ4=2
γ6=2
γ 2=γ5=1
γ7=1
γ4=0
S=43
Si*=9
H=23
S1=S2=9
S3=S5=9
S6=S7=9
S4=6
i*=4
К1=К2=2
К3=К5=2
К6=К7=2
К4=1
η1=η2=1,5
η3=η5=1,5
η6=η7=1,5
η4=1,6
γ1=γ2=1
γ3=γ5=1
γ6=γ7=1
γ4=0
S=30
Si*=6
H=18
Connectivity
(a) α = 0 β = 0,9 ϕ = 0,4
(b) α =0,2 β =1,1 ϕ = 0,5
(c) α =0,7 β =1,7 ϕ = 0,8
Shape
(a) Q = 0 π = 1
(b) Q = 2 π = 2
(c) Q = 3 π = 6
For attributed graph with weighted edges the diameter of the graph and the length of
its edges can be expressed not only topologically (as the number of edges), but also
metrically (through the attributes of edges).
(a)
(b)
(c)
L. Sarycheva, K. Sergieieva
«Искусственный интеллект» 2014 № 4 62
3S
The Examples of Analysis of Subway
Graphs Network Characteristics
Consider an example demonstrating the usefulness of analysis of the graph structure for
spatially referenced objects [10]. Given network of roads is represented as graph in Fig. 3.
Each edge of the graph is the road, each node – the station (point) or a node of roads
intersection. External road (indicated by arrows) were not take into account because of their
secondary importance. Assume that 7 new roads indicated by dashed lines in Fig. 3 were
designed.
Which of these roads will have the greatest impact on the availability of one point
with respect to another within the territory? How will the appearance of each new road
impact on the relative availability of individual points within the network? To answer these
questions, the parameters of centrality of the original graph (with no new roads) and graphs
(a) – (f) in Fig. 3 were calculated. The calculated parameters are presented in Table 2.
It is evident from the table that each new road improves communication between
settlements (reduces average path length in the network of roads), but their effectiveness
varies.
(a) (b) (c)
(d) (e) (f)
– – – - proposed roads
Figure 3 – The impact of new roads in the network on the relative availability
of settlements (dots highlights items that will benefit from the construction of these roads,
the size of dots indicates the degree of winning)
Graph Analysis of Underground Transport Networks
«Штучний інтелект» 2014 № 4 63
3S
Table 2 – The parameters of graphs modeling road networks
Roads network graphs (according to Fig. 3)
Paramerets
Initial а b c d e f
The average
length of the path
in the network
242 220 238 216 217 221 174
Si* 190 178 190 168 156 164 122
S 4359 3961 4283 3895 3920 3982 3125
The place-
preference
(according to S)
9 4 6 2 3 5 1
H 1688 1336 1536 1574 2068 1896 1736
% of decrease of
the average path
length in the
network
0 9,1 1,7 10,6 10,0 8,6 28,3
Nodes vi
beneficial to the
new road with the
degree ∆i
- ∆10=70
∆11=58
∆5=52
∆4=46
∆13=46
∆36=33
∆37=33
∆35=10
∆37=105
∆12=104
∆36=74
∆13=69
∆11=52
∆21=80
∆31=65
∆20=43
∆18=40
∆19=40
∆21=74
∆20=36
∆19=34
∆18=34
∆37=146
∆12=141
∆36=126
∆21=122
∆31=106
The most effective road is (f) as it reduces the average length of a path in the network
on 10.6%, the least effective – (b). Simultaneous creation of new roads (a) - (f), shown by
the graph in Fig. 3 (f), reduces the average path length of the network on 28.3%. The
benefit taken for settlements from building the new roads is determined by changes in the
average path length for each locality. For the (a) road construction the most interested are
the 10-th, 11-th and 5-th settlements, in road (b) - the 36-th, 37-th, in road (c) – the 37-th,
12-th, 36-th, in road (d) – the 21-th, 31-th, 20-th, for the (e) road – the 21-th, 20-th
settlements. The costs given by settlements for building of new roads can be distributed in
proportion to the winning, defined by parameter i∆ ( igraph initialii S - node S=∆ ) in Table 2.
Calculation of Subway Indexes
In the other example the subway network graphs structure for some European cities
is analyzed (Table 3). All subway schemes and cities subway statistics are available
through [12, 13] (Table 4, 5, 6). The number of stations 4X includes transfer stations taken
from [14]. The number of edges and nodes m , n of subway network graphs are calculated
by the scheme taking into account the fact that several transfer stations (from various
subway lines) create one node of the graph.
Correlation coefficients for graph connectivity characteristics (α ,β ,π indexes –
аlfa, beta, iP , PID) and input indexes 621 X,...,X,X is the highest for the π -indexes and
the lowest for ϕ -indexes – fi. This means that the π - indices are informative characteristic
for analysis of subways networks graphs (Table 7).
The Paris, Moscow, Prague, Kiev and Saint Petersburg are characterized by the largest
values of passenger-to-kilometers (kilometers) ratio, which is especially evident from fig.4(b)
in auxiliary scale. Only Prague and Kiev have in common the largest values of passenger /
population ratio (this fact may be caused by the large number of tourists) (fig.4(a)).
L. Sarycheva, K. Sergieieva
«Искусственный интеллект» 2014 № 4 64
3S
Table 3 – Subway schemes of European cities
Paris Madrid Moscow
London Berlin
Athens Budapest Prague
Kiev Kharkov Minsk
Saint Petersburg
Graph Analysis of Underground Transport Networks
«Штучний інтелект» 2014 № 4 65
3S
Table 4 – Input data for subways
Length
P, km
Population
(million)
Ridership per
year (million)
Number
of
stations
Urban
area,
km
2
Number
of lines №
City (subway
location)
X1 X2 X3 X4 X5 X6
1 Athens 78,3 3,50 407 64 583 3
2 Berlin 146,11 3,95 507 196 1347 9
3 Budapest 32,3 1,73 171 42 894 3
4 Warsaw 21,7 1,71 139 21 544 1
5 Hamburg 112,9 1,79 209 108 712 4
6 Dnepropetrovsk 7,1 1,00 8 6 324 1
7 Kiev 65,9 2,81 527 51 544 3
8 London 470 9,40 1171 381 1623 11
9 Madrid 224,5 5,90 602 288 1321 13
10 Minsk 35,4 1,85 281 28 324 2
11 Moscow 313,1 15,50 2464 188 4403 12
12 Paris 217,3 10,36 1524 383 2845 16
13 Prague 59,4 1,27 589 57 285 3
14
Saint
Petersburg 113 4,84
784 67
1191
5
15 Kharkov 39,3 1,45 239 29 466 3
Table 5 – Subway characteristics
Edges
weights
Node
weights
Frequency
of travels
Areal
weights
Areal
density of
lines
Linear
density of
stations
Areal
density of
stations
№
City
(subway
location)
Х3/Х1 Х3/Х4 Х3/Х2
Х3/Х5*10
3
Х5/Х1 Х1/Х4 Х5/Х4
1 Athens 5,2 6,4 116,3 698,1 7,4 1,2 9,1
2 Berlin 3,5 2,6 128,4 376,6 9,2 0,7 6,9
3 Budapest 5,3 4,1 98,6 190,7 27,7 0,8 21,3
4 Warsaw 6,4 6,6 81,4 255,9 25,1 1,0 25,9
5 Hamburg 1,9 1,9 116,8 293,5 6,3 1,0 6,6
6 Dnepropetrovsk 1,1 1,4 8,1 25,0 45,6 1,2 54,0
7 Kiev 8,0 10,3 187,8 968,2 8,3 1,3 10,7
8 London 2,5 3,1 124,6 721,5 3,5 1,2 4,3
9 Madrid 2,7 2,1 101,9 455,3 5,9 0,8 4,6
10 Minsk 7,9 10,0 152,3 868,2 9,2 1,3 11,6
11 Moscow 7,9 13,1 159,0 559,6 14,1 1,7 23,4
12 Paris 7,0 4,0 147,2 535,7 13,1 0,6 7,4
13 Prague 9,9 10,3 465,8 2067,4 4,8 1,0 5,0
14 Saint Petersburg 6,9 11,7 162,0 658,2 10,5 1,7 17,8
15 Kharkov 6,1 8,3 165,0 513,5 11,9 1,4 16,1
L. Sarycheva, K. Sergieieva
«Искусственный интеллект» 2014 № 4 66
3S
Table 6 – Subway graphs characteristics
№
City (subway
location)
m n P D
DM
(D, km)
alfa beta fi
Pi
(P/D)
PID
(X1/DM)
1 Athens 61 60 61 23 35,0 0,02 1,02 0,35 2,65 2,24
2 Berlin 187 177 187 39 31,8 0,03 1,06 0,36 4,79 4,60
3 Budapest 39 40 39 19 17,3 0,00 0,98 0,34 2,05 1,87
4 Warsaw 20 21 20 20 21,7 0,00 0,95 0,35 1,00 1,00
5 Hamburg 104 97 104 45 55,8 0,04 1,07 0,36 2,31 2,02
6 Dnepropetrovsk 5 6 5 5 7,1 0,00 0,83 0,42 1,00 1,00
7 Kiev 48 48 48 17 23,9 0,01 1,00 0,35 2,82 2,76
8 London 370 316 370 59 74,0 0,09 1,17 0,39 6,27 6,35
9 Madrid 276 237 276 32 40,6 0,09 1,16 0,39 8,63 5,53
10 Minsk 26 27 26 13 18,1 0,00 0,96 0,35 2,00 1,96
11 Moscow 176 152 176 24 45,1 0,08 1,16 0,39 7,33 6,94
12 Paris 367 307 367 37 24,3 0,10 1,20 0,40 9,92 8,94
13 Prague 54 54 54 23 25,6 0,01 1,00 0,35 2,35 2,32
14 Saint Petersburg 62 59 62 18 30,1 0,04 1,05 0,36 3,44 3,75
15 Kharkov 26 26 26 12 17,3 0,02 1,00 0,36 2,17 2,27
Table 7 – Correlation coefficients for subway graphs characteristics
X1 X2 X3 X4 X5 X6 alfa beta fi Pi PID
X1 1
X2 0,8 1
X3 0,7 1,0 1
X4 0,8 0,8 0,6 1
X5 0,7 1,0 0,9 0,7 1
X6 0,8 0,8 0,8 1,0 0,8 1
alfa 0,9 0,8 0,8 0,9 0,8 0,9 1
beta 0,8 0,8 0,7 0,9 0,7 0,9 0,9 1
fi 0,5 0,5 0,4 0,6 0,5 0,6 0,6 0,3 1
Pi 0,8 0,8 0,8 1,0 0,8 1,0 0,9 0,9 0,6 1
PID 0,8 0,9 0,8 0,9 0,8 1,0 0,9 0,9 0,5 1,0 1
Does the ridership per year depend on parameters of the graph? According to Fig. 5,
the iP parameter of the Paris and Madrid subway network graphs allows to suggest about
the possibility to increase ridership in these cities in comparison with the observed
situation. Ridership per year in Moscow, Saint Petersburg and Prague are optimal with
respect to iP parameter. At the same time the difference (Fig. 6) of
D
P
Pi = (calculated
from the graph) and
DM
X
PID
1
= (calculated from the length of subway lines in km)
parameters is the largest for Madrid and Paris. Paris and Madrid subway networks may
have the largest passenger traffic (larger than in Moscow).
If we compare the subway networks to indicate how the total length of subway lines
(
1
X ) matches to π -index (Fig. 7), we will conclude that the London network is the longest
and possesses the lower π -index value than the Paris network (whose length is two times
shorter).
Graph Analysis of Underground Transport Networks
«Штучний інтелект» 2014 № 4 67
3S
0
500
1000
1500
2000
2500
3000
M
o
s
c
o
w
P
a
r
i
s
Lo
n
don
S
a
i n
t
P
e
ter
s
b
u
r
g
M
a
dr
id
P
r
ag
u
e
K
i e
v
B
e
r
l i
n
A
t h
e
n
s
M
i n
s
k
K
h
a
r k
o
v
H
a
m
b
u
rg
B
ud
a
pes
t
W
a
rs
aw
D
ne
pro
pet
r
ovs
k
R
id
e
rs
h
ip
p
e
r
y
e
a
r
(m
il
li
o
n
),
Х
3
0
2
4
6
8
10
12
14
16
18
P
o
p
u
la
ti
o
n
(
m
il
li
o
n
),
Х
2
X3
X2
a)
0
500
1000
1500
2000
2500
3000
M
o
s
c
o
w
P
a
r
i s
Lo
n
d
o
n
S
a
i n
t
P
e
t
e
rs
bu
rg
M
a
d
r
i d
P
r
ag
ue
K
i e
v
B
e
r
lin
A
th
e
n
s
M
ins
k
K
ha
rk
o
v
H
a
mb
u
r
g
B
u
d
a
p
e
s
t
W
ar
s
a
w
D
n
e
p
r
op
e
t r
o
v
s
k
R
id
e
rs
h
ip
p
e
r
y
e
a
r
(m
il
li
o
n
),
Х
3
0
50
100
150
200
250
300
350
400
450
500
L
e
n
g
th
(
k
m
),
X
1
X3
X1
b)
Figure 4 – Plots for subway characteristics of European cities: a) ridership per year
(millions) and population (millions); b) ridership per year (millions) and length (km)
0
500
1000
1500
2000
2500
3000
M
o
s
co
w
P
a
r
i s
Lo
nd
o
n
S
a
i n
t
P
e
t e
r
s
b
u
r
g
M
ad
rid
P
r
ag
ue
K
i e
v
B
e
r
l i
n
A
t h
en
s
M
in
s
k
K
ha
rko
v
H
am
bu
r
g
B
u
d
a
p
e
s
t
W
ars
aw
D
nep
r
op
e
tro
vsk
R
id
e
rs
h
ip
p
e
r
y
e
a
r
(m
il
li
o
n
),
X
3
0
2
4
6
8
10
12
P
i
X3
Pi
Figure 5 – Plots of ridership and π -index values
L. Sarycheva, K. Sergieieva
«Искусственный интеллект» 2014 № 4 68
3S
-1
0
1
1
2
2
3
3
M
o
s
c
o
w
P
a
r
i
s
L
o
n
d
o
n
Sa
in
t P
ete
rs
b
u
r
g
M
a
d
r
i d
P
r
a
g
u
e
Ki e
v
Be
rli
n
A
t h
e
n
s
M
in
s
k
K
h
a
r k
o
v
H
a
mb
ur
g
B
u
d
a
p
e
s
t
W
a
rs
a
w
D
n
e
p
r
o
p
e
t
ro
v
s
k
P
i
-
P
ID
Figure 6 – Differences of iP and PID indexes
0
50
100
150
200
250
300
350
400
450
500
L
o
n
d
o
n
M
o
s
c
o
w
M
ad
ri
d
P
a
r
i s
B
er
lin
S
a
i n
t
P
e
t
e
r
s
b
u
r
g
H
a
m
b
u
r
g
A
th
ens
K
ie
v
P
r
ag
ue
K
h
a
r
k
o
v
M
in
s
k
B
u
d
a
p
e
s
t
W
ar
s
a
w
D
n
epr
op
e
t
r
o
v
s
k
L
e
n
g
th
P
,
k
m
,
X
1
0
2
4
6
8
10
12
P
i
X1
Pi
Figure 7 – Plots of Length P (km) and π -index values
Clustering of examined networks based on graph characteristics (α ,β ,π – indexes) into
K clusters ( 4,3,2K = ) using the k -means method highlights the next clusters (Table 8).
Table 8 – Clustering of subway networks based on graph characteristics
Clustering on the basis of α, β, π
– indexes
Clustering on the basis of Х1,
Х2, Х3, Х4, Х5 characteristics
City (subway
location)
K=2 K=3 K=4 K=2 K=3 K=4
Athens 2 2 2 2 3 2
Berlin 2 2 4 2 3 3
Budapest 2 2 2 2 2 2
Warsaw 2 3 3 2 2 2
Hamburg 2 2 2 2 2 2
Dnepropetrovsk 2 3 3 2 2 2
Kiev 2 2 2 2 2 2
London 1 1 1 1 1 1
Madrid 1 1 1 2 3 3
Minsk 2 2 2 2 2 2
Moscow 1 1 1 1 1 4
Paris 1 1 1 1 1 1
Prague 2 2 2 2 2 2
Saint Petersburg 2 2 4 2 3 2
Kharkov 2 2 2 2 2 2
Graph Analysis of Underground Transport Networks
«Штучний інтелект» 2014 № 4 69
3S
The peculiarities of obtained clusters:
− (London, Madrid, Moscow, Paris) are characterized by the highest values of the
α ,β ,π parameters;
− for (Berlin, Saint Petersburg) the values of parameters are above average;
− for (Athens, Budapest, Hamburg, Kiev, Minsk, Prague, Kharkov) the values of
α ,β ,π parameters are close to average;
− (Warsaw, Dnepropetrovsk) are characterized by the lowest values of α ,β ,π parameters.
Cities clustering on the basis of input characteristics ( 5421 X,X,X,X ) does not
include Madrid, Moscow or Warsaw, Dnepropetrovsk into the same cluster. So the
structure of cluster of subway network graphs based on α ,β ,π indexes is not the same as
the structure of clusters based on input data 54321 X,X,X,X,X .
Conclusions
The methodic for city subway networks analysis on the basis of graph characteristics
(centrality, connectivity and shape) is proposed. The subways characteristics are calculated
from values of subways indexes (number of lines, number of stations, length in kilometers,
ridership per year) and from indicators of cities urbanization (area and population). A
relationship between graphs (roads) structure and weights of their edges, between π -index
describing the shape of the graph and the number of passengers is demonstrated. It is
shown on a practical example that the analysis of structure of proposed road network
graphs can be useful in determining the sequence of new roads construction. Clustering of
underground transport networks based on characteristics of network graph structure was
performed for the first time.
References
1. Levinson D.M. Planning for Place and Plexus: Metropolitan Land Use and Transport / D.M. Levinson,
K.J. Krizek // Routledge, ISBN-13: 978-0415774918. – 2008. – 334 p.
2. Levinson D. Forecasting and Evaluating Network Growth / D. Levinson, X. Feng, M.O. Norah //
Networks and Spatial Economics. – 12(2). – 2012. – p. 239-262.
3. Pavithra P. Network Structure and Spatial Separation / P. Pavithra, H. Hochmair, D. Levinson //
Environment and Planning: Planning and Design. – 39(1). – 2012. – P. 137-154.
4. Levinson D. Network Structure and City Size / D. Levinson // 2012
http://nexus.umn.edu/Papers/NetworkStructureAndCitySize.pdf
5. Batty M. Modeling urban dynamics through GIS-based cellular automata /M. Batty, Y. Xie, Z. Sun //
Computers, Environment and Urban Systems. – 23. – 1999. – p. 205-233.
6. Batty M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and
Fractals / M. Batty // The MIT Press, ISBN: 978-0-262-02583-6. – 2007. – 565 p.
7. Jin Y. Applied Urban Modeling: New Types of Spatial Data Provide a Catalyst for New Models / Y. Jin,
M. Batty // Transactions in GIS. – 17(5). – 2013. – p. 641-644.
8. Берж К. Теория графов и ее применения / К. Берж. – M.: Госиноиздат, 1962. – 319 с.
9. Оре О. Теория графов / О. Оре. – M.: Наука, 1980. – 336 с.
10. Хаггет П. География: синтез современных знаний / П. ХаггетZinatne. – M.: Прогресс, 1979. – 684 с.
11. Сарычева Л.В. Компьютерный эколого-социально-экономический мониторинг регионов.
Математическое обеспечение.НГУ / Л.В. Сарычева. – Днепропетровск: НГУ, 2003. – 222 с.
12. Metro systems by annual passenger rides. Wikipedia, the free encyclopedia, 2013
http://en.wikipedia.org/wiki/Metro_systems_by_annual_passenger_rides
13. Demographia World Urban Areas (World Agglomerations): 9th Annual Edition (March 2013).
http://www.demographia.com/db-worldua.pdf
14. Europe. UrbanRail.net, 2013. http://www.urbanrail.net/eu/euromet.htm
L. Sarycheva, K. Sergieieva
«Искусственный интеллект» 2014 № 4 70
3S
RESUME
L. Sarycheva, K. Sergieieva
Graph Analysis of Underground Transport Networks
Background: Researches on applying graph theory to analyze transportation
networks have been carrying out since the 1960-s till the present days. The most famous
works were published by David Levinson, Mike Batty, Paul Longley etc. Analysis of
transport networks graphs involves solving problems: forecasting and evaluating transport
network growth; studying the influence of transport network structure and topology on
quantitative indicators of traffic flows; investigation of dependence of network structure
from the size of cities ground transportation and urban structure; construction of dynamic
models of urban systems using GIS technologies based on cellular automata, agent-based
modeling and fractal analysis; investigation relationships between quantitative indicators
of transport network structure and its performance, density and urban spatial pattern, and
the trips distance for early solution of transport problems etc. The up-to-date researches
don’t pay enough attention to network bandwidth analysis depending on the parameters of
structure of the network graph. This aspect is investigated in the paper.
Materials and methods: The subway network graphs structure for some European
cities is analyzed using the methods of graph theory and clustering. The number of edges
and nodes of subway network graphs were calculated by the scheme taking into account
the fact that several transfer stations (from various subway lines) create one node of the
graph. All subway schemes and cities subway statistics are available through Internet.
Results: It is observer that the ridership per year depends on parameters of the graph.
In Paris and Madrid subway network graphs structure indexes allow to suggest about the
possibility to increase ridership in these cities in comparison with the observed situation.
Ridership per year in Moscow, Saint Petersburg and Prague are optimal. At the same time
Paris and Madrid subway networks may have the largest passenger traffic (larger than in
Moscow). Clustering of examined networks based on graph characteristics) into clusters
highlights the next clusters: London, Madrid, Moscow, Paris are characterized by the
highest values of the graph connectivity parameters; for Berlin, Saint Petersburg the values
of parameters are above average; for Athens, Budapest, Hamburg, Kiev, Minsk, Prague,
Kharkov the values of graph connectivity parameters are close to average; Warsaw,
Dnepropetrovsk are characterized by the lowest values of parameters. The structure of
cluster of subway network graphs based on indexes is not the same as the structure of
clusters based on input data.
Conclusion: The methodic for city subway networks analysis on the basis of graph
characteristics (centrality, connectivity and shape) is proposed. The subways characteristics are
calculated from values of subways indexes (number of lines, number of stations, length in
kilometers, ridership per year) and from indicators of cities urbanization (area and population).
The relationship between graphs (roads) structure and weights of their edges, between π -index
describing the shape of the graph and the number of passengers is demonstrated. It is shown on a
practical example that the analysis of structure of proposed road network graphs can be useful in
determining the sequence of new roads construction. Clustering of underground transport
networks based on characteristics of network graph structure was performed for the first time.
The article entered release 16.04.2014.
|