A new representation of Lagrange’s theorem in differential calculus

It is found a new representation of the mean value Lagrange’s theorem in the differential calculus. Any function increment can be expressed through the derivatives in the ending points of a given closed interval. Mean values of the Lagrange derivative and our theory derivative are coincided, but t...

Full description

Saved in:
Bibliographic Details
Date:2014
Main Authors: Mironenko, L.P., Petrenko, I.V.
Format: Article
Language:English
Published: Інститут проблем штучного інтелекту МОН України та НАН України 2014
Series:Искусственный интеллект
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/85304
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A new representation of Lagrange’s theorem in differential calculus / L.P. Mironenko, I.V. Petrenko // Искусственный интеллект. — 2014. — № 2. — С. 129–133. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:It is found a new representation of the mean value Lagrange’s theorem in the differential calculus. Any function increment can be expressed through the derivatives in the ending points of a given closed interval. Mean values of the Lagrange derivative and our theory derivative are coincided, but the middle points are different. Our theory allows easily find the middle point and it is not so easy according to Lagrange’s theorem. Furthermore, our theory makes it possible to formulate the second mean value theorem in integral calculus, as it is a consequence of differential theorem.