Класифікація функціональних даних за допомогою сплайнів з вільними вузлами

У багатьох прикладних задачах дані, що були отримані на основі вимірювань певного процесу, концептуально можна розглядати як функції неперервного аргументу. Аналіз таких даних, що прийнято називати «функціональними», значно ускладнюється порівняно з аналізом багатовимірних даних. Функціональні дані...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Коршунова, І.А.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2014
Schriftenreihe:Системні дослідження та інформаційні технології
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/85504
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Класифікація функціональних даних за допомогою сплайнів з вільними вузлами / І.А. Коршунова // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 115-124. — Бібліогр.: 11 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:У багатьох прикладних задачах дані, що були отримані на основі вимірювань певного процесу, концептуально можна розглядати як функції неперервного аргументу. Аналіз таких даних, що прийнято називати «функціональними», значно ускладнюється порівняно з аналізом багатовимірних даних. Функціональні дані за допомогою відображення у вектори вільних вузлів апроксимуючих сплайнів практично без втрати інформації можна звести до вигляду, зручного для традиційних статистичних алгоритмів. Знаходження вільних вузлів сплайна є складною задачею оптимізації, для вирішення якої в цій роботі представлено новий евристичний метод. Не менш важливим етапом є вибір кількості параметрів апроксимаційної моделі, для чого було розроблено підхід на основі багатокритеріальної оптимізації за часом обчислення вузлів та точності апроксимації. Застосування сплайнів для класифікації функціональних даних було продемонстровано на задачі діагностики артриту за формою кісток.