Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years

A financial crisis undoubtedly had the enormous negative operating on the real sector in a national and global scale. A grate number of stopping of companies, business restructuring, decrease of production, and staff surplus. Therefore it is vitally important to estimate financial steady development...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Angelov, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут економіки промисловості НАН України 2014
Назва видання:Економічний вісник Донбасу
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/87628
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years / G. Angelov // Економічний вісник Донбасу. — 2014. — № 4(38). — С. 102-108. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-87628
record_format dspace
spelling irk-123456789-876282015-10-23T03:02:12Z Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years Angelov, G. Finance A financial crisis undoubtedly had the enormous negative operating on the real sector in a national and global scale. A grate number of stopping of companies, business restructuring, decrease of production, and staff surplus. Therefore it is vitally important to estimate financial steady development of the Bulgarian companies. Primary objective of such estimation - to identify accessible possibilities for the acceptance of the adequate, self-weighted decisions, to support companies in the process of adaptation to replacement of market requirements. Aim of the article - to foresee main financial pressures, using models for the estimation of authenticity of bankruptcy of companies and to offer the choice of decisions for overcoming these difficulties. An aim was arrived at through the empiric test of existent models in terms of open corporations of index of SO- FIX during four years, from 2011 to 2014. Results from this test then drawn on as a benchmark test in the process of decision-making. Фінансова криза поза сумнівом мала величезну негативну дію на реальний сектор в національному і глобальному масштабі, у вигляді числа припинень компаній, ділової реструктуризації, убування виробництва, і штабної надмірності. Тому життєво важливо оцінити фінансовий стійкий розвиток Болгарських компаній. Головна мета такої оцінки - ідентифікувати доступні можливості для ухвалення адекватних, зважених рішень, щоб підтримувати компанії в процесі пристосування до заміни ринкових вимог. Мета цієї статті - передбачити головні фінансові труднощі, використовуючи моделі для оцінки вірогідності банкрутства компаній і запропонувати вибір рішень для подолання ці труднощі. Мета досягалася через емпіричне випробування існуючих моделей в термінах відкритих акціонерних товариств індексу SOFIX впродовж чотирьох років, з 2011 до 2014. Результати від цього випробуванняпотім використані як еталонний тест в процесі ух- валення рішення. Финансовый кризис несомненно имел огромное негативное воздействие на реальный сектор в национальном и глобальном масштабе, в виде числа прекращений компаний, деловой реструктуризации, убывания производства, и штабной избыточности. Поэтому жизненно важно оценить финансовое устойчивое развитие Болгарских компаний. Главная цель такой оценки - идентифицировать доступные возможности для принятия адекватных, взвешенных решений, чтобы поддерживать компании в процессе приспосабливания к замене рыночных требований. Цель этой статьи - предсказать главные финансовые трудности, используя модели для оценки вероятностей банкротства компаний и предложить выбор решений для преодоления эти трудности. Цель достигалась через эмпирическое испытание существующих моделей в терминах открытых акционерных обществ индекса SOFIX в течение четырех лет, с 2011 до 2014. Результаты от этого испытания затем использованы как эталонный тест в процессе принятия решения. 2014 Article Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years / G. Angelov // Економічний вісник Донбасу. — 2014. — № 4(38). — С. 102-108. — Бібліогр.: 22 назв. — англ. 1817-3772 http://dspace.nbuv.gov.ua/handle/123456789/87628 336.76 (497.2) en Економічний вісник Донбасу Інститут економіки промисловості НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Finance
Finance
spellingShingle Finance
Finance
Angelov, G.
Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years
Економічний вісник Донбасу
description A financial crisis undoubtedly had the enormous negative operating on the real sector in a national and global scale. A grate number of stopping of companies, business restructuring, decrease of production, and staff surplus. Therefore it is vitally important to estimate financial steady development of the Bulgarian companies. Primary objective of such estimation - to identify accessible possibilities for the acceptance of the adequate, self-weighted decisions, to support companies in the process of adaptation to replacement of market requirements. Aim of the article - to foresee main financial pressures, using models for the estimation of authenticity of bankruptcy of companies and to offer the choice of decisions for overcoming these difficulties. An aim was arrived at through the empiric test of existent models in terms of open corporations of index of SO- FIX during four years, from 2011 to 2014. Results from this test then drawn on as a benchmark test in the process of decision-making.
format Article
author Angelov, G.
author_facet Angelov, G.
author_sort Angelov, G.
title Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years
title_short Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years
title_full Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years
title_fullStr Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years
title_full_unstemmed Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years
title_sort options for modelling the financial viability of sofix companies in the post-crisis years
publisher Інститут економіки промисловості НАН України
publishDate 2014
topic_facet Finance
url http://dspace.nbuv.gov.ua/handle/123456789/87628
citation_txt Options for Modelling the Financial Viability of Sofix Companies in the Post-crisis Years / G. Angelov // Економічний вісник Донбасу. — 2014. — № 4(38). — С. 102-108. — Бібліогр.: 22 назв. — англ.
series Економічний вісник Донбасу
work_keys_str_mv AT angelovg optionsformodellingthefinancialviabilityofsofixcompaniesinthepostcrisisyears
first_indexed 2025-07-06T15:16:59Z
last_indexed 2025-07-06T15:16:59Z
_version_ 1836911186447171584
fulltext G. Angelov 102 Економічний вісник Донбасу № 4(38), 2014 UDC 336.76 (497.2) George Angelov1 D. A. Tsenov Academy of Economics, Svishtov, Bulgaria OPTIONS FOR MODELLING THE FINANCIAL VIABILITY OF SOFIX COMPANIES IN THE POST-CRISIS YEARS The1 main objective of any business entity is to achieve positive financial results which are evidence of sound managing practices as well as an indicator of profit and growth.2 During a crisis, Bulgarian compa- nies face substantial difficulties which lead to shrink in production, reduced advertising, and in some cases, to making loss for several years on end. These could be explained both with the deteriorated economic envi- ronment in which companies operate during a crisis and with the possibility that their customers (i.e. other companies and households)3 might be going through a difficult period as well. It is therefore necessary to assess the financial viability of companies by employ- ing models for predicting bankruptcy probability. Fi- nancial managers’ awareness about the essence of fail- ure is vital to the financial-managerial policy of com- panies. Therefore, financial managers must be familiar with the nature of failure, what is more, they must be able to predict a possible failure in advance and have the knowledge how to deal with the threat of a bank- ruptcy. Analysis of a potential financial distress which a company is facing and which may result in liquidity shortage, insolvency, or even bankruptcy, is a major component of overall corporate financial management. As a matter of fact, when undertaking any activity that is related to starting a production or making some in- vestment, it is important to take into account different downturn scenarios. Profit and growth are goals which all companies pursue, yet their opposites, failure and liquidation, must be deemed just as likely.4 The ability to predict corporate failure due to in- solvency far before it has become a fact is important both to managers and lenders of enterprises.5 Corporate bankruptcy reflects problems which have occurred in 1 The author is assistant professor in Department “Finance and credit”, Faculty “Finance” to “D. A. Tsenov Academy of Economics”, Svishtov, Bulgaria gange- lov@uni-svishtov.bg. 2 Adamov, V. Finansi na firmata. Biblioteka Obrazovanie i nauka, # 28, Svishtov. 2012, p. 492. 3 Pavlova, M. Faktorno vyzdeistvie vyrhu bogatstvoto na domakinstvata v . Bulgaria. Факторное воздействие на богатство домашних хозяйств в Республике Болгарии//Економіка України в умовах глобалізації i регiоналiзацiї: Збірник тез доповідей : Міжнародної науково - практичної Iнтернет- конференції студентів та молодих вчених – Тернопіль 4-5 квітня 2014 року., ТНЕУ, 2014, с. 214-217. 4 Adamov, V. Finansi na firmata. Biblioteka Obrazovanie i nauka, # 28, Svishtov. 2012, p. 493. 5 Kasarova, V. Modeli i pokazateli za analiz na finansovata ustoychivost na kompaniyata. Nov balgarski iniversitet. 2010. the production, the financial management, or the fund- ing of a company. There might be a variety of reasons behind that a deteriorated economic environment, cus- tomers being in financial distress, delayed payments to lenders and suppliers, etc. which are the major prereq- uisites for financial disturbances within a company. The financial analysis of each company is based on the assessment of its capital structure and market perfor- mance; analysis of its profitability and earnings; and evaluation of its assets and liquidity. A further instru- ment which might be employed in the analysis might also be the assessment of bankruptcy probability. Models for predicting corporate failure are among the main techniques and instruments for determining the future status of companies on the basis of applying a set of financial ratios. The possibility to predict fi- nancial insolvency is extremely important to private investors (the shareholders of a company) and from a social perspective, since this is a signal for public re- sources mismanagement. A lot of scientists have proposed different models for predicting a potential failure of companies. These models are based on the assessment of the financial data about companies which are provided in their bal- ance sheets and their income statements as various ratios. The first model for predicting bankruptcy by employing financial ratios was developed by W. H. Beaver in 1966.6 The underlying objective of his work was to assess the financial situation of a company ap- plying for a loan by analyzing its solvency, the terms on which a loan could be extended7 as well as the ca- pacity of the company to service its debt in due time. In order to do so, Beaver determined a ratio which is calculated as a correlation between the value of the cash flow and the amount of the liabilities of a compa- ny. 6 William H. Beaver Empirical Research in Accounting: Selected Studies 1966 Journal of Accounting Research Vol. 4, (1966), p. 71-111 / – Mode http://www.jstor.org/discover/10.2307/2490171?sid=2110 5896258411&uid=2&uid=4/. 7 Marinov, I. Sovremennye aspekty i rolq na’evropeyskoto zakonodatelstvo, reglamentiruyushtego usloviya i poryadok zakluycheniya dogovorov potrebitel’skih kreditov. Ekonomika Ukrainy v umovah globalizatsii i regionalizatsii: Zbirnik tez dopovidey: Mizhnarodnoy naukogo-praktichnoy Interent-konferentsii studentiv ta molodih vchenih – Ternopil’ 4-5 kvitiya 2014 roku., s. 201-204. TNEU, 2014. G. Angelov 103 Економічний вісник Донбасу № 4(38), 2014 Table 1 Beaver ratio = Interpretation of the indicator Companies performing normally 5 years to bankruptcy A year to bankruptcy 0.4 – 0.45 0.17 -0.15 E. Altman contributed enormously to corporate bankruptcy research by designing a number of models for predicting it. These models are based on the input of several ratios, each of them acquiring some relative weight according to how important the author consid- ers that ratio to be. In a number of research works1 dealing with corporate bankruptcy, Altman developed and presented his Z-models. The first model2 only takes into account two factors, corporate liquidity and indebtedness. The two-factor model does not include an analysis of profitability (yield, solvency, and effi- ciency) and is therefore not commonly applied in prac- tice. Table 2 Altman’s two-factor model К1 – Current ratio (Current assets/Current liabilities) К2 – Financial dependency ratio (Debt/Total assets) Interpretation of the indicator Z>0 – Bankruptcy probability exceeds 50% Z=0 – 50 % bankruptcy probability Z<0 – Less than 50% bankruptcy probability The five-factor model3 further elaborated the two- factor model for predicting corporate bankruptcy. It is also known as Altman’s Z-Score and is employed to determine the so-called bankruptcy point. The formula is based on coefficients used to analyse the liquidity, yield, indebtedness, solvency, and efficiency of a com- pany. The objective is to predict bankruptcy probabil- ity. This model has gained enormous popularity due to its comprehensive nature and has become a practically approved criterion for predicting the probability of a corporate bankruptcy. Altman’s model4 has gained recognition in prac- tice as it makes it possible to assess the condition of a company by taking into account the combined effect of multiple factors (financial indicators). The only shortcoming of the presented model is the fact that it was designed and tested in the USA and therefore it 1 Altman, E. Haldeman, R. Narayanan. P. ZETA analysis A new model to identify bankruptcy risk of cor- porations. Journal of Banking & Finance, Volume 1, Issue 1, June 1977, p 29–54. 2 Altman, I. Corporate Financial Distress and Bankruptcy: A Complete Guide to Predicting & Avoiding Distress and Profiting from Bankruptcy. Wiley, 1993. 3 Adamov, V. Finansi na firmata. Biblioteka Obrazovanie i nauka, # 28, Svishtov. 2012, p. 503. 4 Gabrovski, R. Industrialen risk i menidzhmant. Akademichno Izdatelstvo Tsenov, Svishtov. 2009. takes into consideration the characteristics of American companies and the conditions of the market in which they operate. Therefore, its application to the Bulgarian business environment may lead to distortion of results and to a failure to report the real situation of a compa- ny. Table 3 Altman’s five-factor model 5 Х1 = Net working capital/Total assets Х2 = Earnings/Total assets Х3 =ЕBIT/Total assets Х4 =Leverage ratio Х5 = Sales revenue/Total assets Interpretation of the indicator Z>2.99 – The company is not threatened by bankruptcy Z=1.88-2.99 – Grey zone Z<1.88 – Bankruptcy is probable The model designed by Fulmar6, the H-Score model, is another major contribution to assessing how probable a corporate failure is. Fulmar presented that model in his research work, “A Bankruptcy Classifica- tion Model for Small Firms” which was published in 1984. According to that model, a company is likely to be declared insolvent if the result of the model is less than zero. The model includes nine ratios to assess the financial situation of a company and each of these ratios is given a certain relative weight. Table 4 Fulmar’s H-factor model 7 H1 = Earnings/Total assets H2 = Sales revenue/Total liabilities H3 = EBIT/Equity H4 = Sales revenue/Amount of debt H5 = Debt/Total assets H6 = Current liabilities/Total assets H7 = Inventory/Total assets H8 = Net working capital/Debt H9 = ЕВІТ/Interests paid on loans Interpretation of the indicator H>0 – The company is not threatened by bankruptcy H<0– Bankruptcy is probable By developing further the underlying logic of these models, the English economist R. Lis8 suggested a four-factor model for assessing the bankruptcy prob- ability for British companies. The model is based on combining the importance of the indexes of liquidity, profitability, and financial independence. 5 Adamov, V. Finansi na firmata. Biblioteka Obrazovanie i nauka, # 28, Svishtov. 2012, p. 502. 6 Fulmer, J. Moon, J. Gavin, T. and Erwin, J. Н- score model and its use in foreseeing the risk of а small enterprises bankrupcy. 7 http://ycharts.com/glossary/terms/fulmer_h_score. 8 Sushko, V., Pavluyk, T. Klasifikatsiya modeley otsinki imovirnosti bankrutstva pidpriemstv. Ekonomiko- matematichne modeluyvaniya protsesiv biznesu. 2014. G. Angelov 104 Економічний вісник Донбасу № 4(38), 2014 Table 5 Lis’ model Х1 = Net working capital/ Total assets Х2 = EBIT/ Total assets Х3 = Earnings/Total assets Х4 = Equity/Debt Interpretation of the indicator Z<0.037 – High probability of a bankruptcy Z>0.037 – Low probability of a bankruptcy A reliable model ignoring the influence of the branch to which companies belong was designed by G. Springate.1 The author tested his model on 40 com- panies and the results he obtained proved to predict company failures within a year with 92.5 per cent accu- racy. The model was then tested on 50 companies in 1979 and on 24 companies in 1980, the accuracy of predictions being 88% and 83.3% respectively. Springate’s model is based on combining the impact of four major indicators of company performance. Table 6 Springate’s model Х1 = Net working capital/ Total assets Х2 = EBIT/Total assets Х3 = Earnings/Current liabilities Х4 = Sales revenue/ Total assets Interpretation of the indicator Z<0.862 – High probability of a bankruptcy Business development and innovations require that a model taking into account the impact of new technologies should be designed and applied. This means that the models developed so far need to be further elaborated and oriented to the new prospects in business development so as to predict corporate fail- ures more precisely. This is the trend followed by R. Taffler2 in his model for assessing corporate bank- ruptcy probability. Similar to Springate’s model, the branches in which companies operate are irrelevant to the test. Table 7 Taffler’s model Х1 = EBIT/Current liabilities Х2 = Current assets/Total liabilities Х3 = Current liabilities/ Total assets Х4 = Sales revenue/ Total assets Interpretation of the indicator Z>0.3 – Low probability of a bankruptcy Z<0.3 – High probability of a bankruptcy The analysis of existing models for assessing the probability of corporate failures is based on employing 1 Springate, Gordon L.V., “Predicting the Possibility of Failure in a Canadian Firm”. Unpublished M.B.A. Research Project, Simon Fraser University, January 1978. 2 Taffler R., Finding those companies in danger using Discriminant analysis and financial ratio data: a comparative based study city business school, City University Business School, London, Working paper №3. publicly accessible data from the financial statements of Bulgarian companies. The results obtained from testing the models presented here are assessed by em- pirically applying them to SOFIX index companies. The selection of companies was based on their produc- tion profile, while financial enterprises and special investment purpose companies (SIPCs) have remained beyond the scope of our analysis due to the specific nature of their business. Financial results are assessed by using publicly accessible information provided by their financial statements, i.e. their balance sheets and income statements. The objective of empirically testing these models is not to undermine the prestige of those companies or to influence public opinion. The underly- ing objective of the author is to compare achieved re- sults and to make a critical analysis of existing models and then present his views on their practical application on behalf of financial managers. Table 8 presents the results about six Bulgarian SOFIX index companies which were obtained after applying the models for assessing corporate bankrupt- cy probability. The analysis of obtained results is conducted as follows:  In terms of the Beaver ratio, the companies included in the analysis are described as unstable, their bankruptcy impending within five years. The best re- sults are those of M+S Hydraulic Plc (0.15-0.2), which are nevertheless much below the interval for a normal- ly performing company (0.4-0.45). Due to the loss reported by Neochim Plc over the last three years, the values of the ratio are zero. This could be approached as a shortcoming of the presented model since a nega- tive financial result does not necessarily indicate a bankruptcy probability for a company;  The employment of Altman’s two-factor mod- el, due to the reverse interpretation of obtained results, determines the companies which are subject to analysis as stable entities with very little bankruptcy probabil- ity. The values registered for Albena Plc, Neochim Plc, Sopharma Plc, and Chimimport Plc range in the inter- val from -1 to -2. Therefore, according to the as- sessment model, they are stable; the bankruptcy proba- bility for them is small; and their viability increases with an increase in these negative values. M+S Hy- draulic Plc is the most viable entity again, its values ranging between -4 and -5 throughout the whole peri- od. According to Altman’s two-factor model, Monbat Plc is stable, too, the value of the ratio growing from -2 to -5.7 in the period between 2012 and 2014;  The results obtained after applying Altman’s five-factor model are relatively constant for each com- pany, yet there are substantial differences when com- paring them to other SOFIX index companies. Never- theless, all companies are described as relatively stable with no short-term bankruptcy probability, except for Albena Plc (1) which is threatened by failure. Due to the specific nature of the calculations made for the index which gives the greatest importance to corporate profitability, quite logically (due to the high values of G. Angelov 105 Економічний вісник Донбасу № 4(38), 2014 Table 8 Results of applying the models for predicting corporate bankruptcy Models for predicting corporate bankruptcy 2014 2013 2012 2011 NEOCHIM PLC Beaver’s model 0.000 0.000 0.000 0.105 Altman’s two-factor model -1.078 -1.240 -1.513 -1.701 Altman’s five-factor model 2.181 1.984 1.998 2.743 Fulmar’s H-factor model -1.293 -0.610 -0.306 4.654 Lis’ model -0.008 -0.002 0.003 0.023 Springate’s model 0.480 0.563 0.633 1.414 Taffler’s model 0.965 1.026 0.862 1.143 MONBAT PLC Beaver’s model 0.600 0.109 0.049 0.043 Altman’s two-factor model -5.696 -2.968 -1.687 -1.926 Altman’s five-factor model 2.158 2.296 1.639 1.670 Fulmar’s H-factor model 3.055 4.457 -0.517 -0.020 Lis’ model 0.037 0.037 0.014 0.016 Springate’s model 1.483 1.526 0.753 0.802 Taffler’s model 0.840 0.872 0.685 0.704 ALBENA PLC Beaver’s model 0.018 0.029 0.034 0.018 Altman’s two-factor model -0.999 -0.947 -1.053 -0.837 Altman’s five-factor model 0.462 0.490 0.538 0.480 Fulmar’s H-factor model -4.543 -4.000 -3.995 -4.692 Lis’ model 0.004 0.006 0.007 0.003 Springate’s model 0.289 0.414 0.545 0.280 Taffler’s model 0.998 1.160 1.239 1.341 SOPHARMA PLC Beaver’s model 0.019 0.037 0.047 0.055 Altman’s two-factor model -1.778 -1.792 -1.832 -1.845 Altman’s five-factor model 1.964 1.967 1.972 2.024 Fulmar’s H-factor model -1.284 -1.284 -1.248 -0.938 Lis’ model 0.013 0.016 0.018 0.020 Springate’s model 0.682 0.739 0.778 0.837 Taffler’s model 0.504 0.511 0.501 0.504 M+S HYDRAULIC PLC Beaver’s model 0.148 0.144 0.156 0.208 Altman’s two-factor model -4.636 -4.668 -5.265 -3.922 Altman’s five-factor model 2.501 2.499 2.533 3.002 Fulmar’s H-factor model 37.459 28.754 21.115 16.191 Lis’ model 0.055 0.055 0.057 0.062 Springate’s model 2.101 2.063 2.293 2.448 Taffler’s model 1.075 1.032 1.208 1.194 CHIMIMPORT PUBLIC HOLDING COMPANY Beaver’s model 0.010 0.013 0.017 0.021 Altman’s two-factor model -1.675 -1.719 -1.780 -1.626 Altman’s five-factor model 2.898 2.656 2.573 2.302 Fulmar’s H-factor model -4.407 -4.378 -4.346 -4.308 Lis’ model 0.010 0.011 0.013 0.010 Springate’s model 0.208 0.243 0.287 0.243 Taffler’s model 0.201 0.205 0.210 0.218 Source: The financial statements of the companies, infostock.bg, investor.bg, calculations by the author. G. Angelov 106 Економічний вісник Донбасу № 4(38), 2014 Beaver’s ratio Altman’s five-factor model Fulmar’s H-factor model Lis’ model Springate’s model Taffler’s model Fig. 1. Financial sustainability of Bulgarian public companies 0,00 0,05 0,10 0,15 0,20 0,25 2014201320122011 NEOCHIM PLC MONBAT PLC ALBENA PLC SOPHARMA PLC CHIMIMPORT PLC M+S HYDRAULIC PLC 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 2014201320122011 NEOCHIM PLC MONBAT PLC ALBENA PLC SOPHARMA PLC M+S HYDRAULIC PLC CHIMIMPORT PLC -10 -5 0 5 10 15 20 25 30 35 40 2014201320122011 NEOCHIM PLC MONBAT PLC ALBENA PLC SOPHARMA PLC M+S HYDRAULIC PLC CHIMIMPORT PLC -0,02 -0,01 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 2014201320122011 0,00 0,50 1,00 1,50 2,00 2,50 3,00 2014201320122011 NEOCHIM PLC MONBAT PLC ALBENA PLC SOPHARMA PLC M+S HYDRAULIC PLC CHIMIMPORT PLC 0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2014201320122011 NEOCHIM PLC MONBAT PLC ALBENA PLC SOPHARMA PLC M+S HYDRAULIC PLC CHIMIMPORT PLC G. Angelov 107 Економічний вісник Донбасу № 4(38), 2014 the profits made), the companies which score best are Chimimport Plc and M+S Hydraulic Plc (2.3-2.9). They are followed by Sopharma Plc, Neochim Plc, and Monbat Plc with similar results (2-3). Therefore, ac- cording to the model most frequently employed to assess bankruptcy probability, Bulgarian public com- panies are not endangered by bankruptcy;  Fulmar’s H-factor model states that when the value of H is below zero, corporate bankruptcy is in- evitable. Over the analysed period, the highest values of the ratio were reported by M+S Hydraulic Plc (max- imum 37.46), the trend being towards a continuous growth. Monbat Plc also recorded positive values in the interval between 0 and 3. The rest of the compa- nies, however, are in an unfavourable situation, the lowest values throughout the whole period being rec- orded for Chimimport Plc and Albena Plc (-5);  According to Lis’ model, the most stable com- pany not endangered by bankruptcy is M+S Hydraulic Plc. Provided that values of Z>0.037 indicate little bankruptcy probability, this is the only company which had values between 0.055 and 0.062. Over the last two years, Monbat Plc also recorded near-border values of 0.037. All the other companies had values indicating their potential failure. What is more, due to the loss which Neochim Plc recorded over the last three years, the values for the company are negative;  The criteria underlying Springate’s model, which assumes that for  Z<0.862 a company is in poor financial health and is undergoing substantial financial distress, indi- cate imminent financial failure for four of the compa- nies included in the analysis. The lowest results are those of Chimimport Plc with its relatively constant values of 0.25. The company is followed by Albena Plc with values between 0.28 and 0.54, and Neochim Plc with its low values between 0.48 and 0.54 over the last three years. The top ranking company is M+S Hydrau- lic Plc with its constant maximum values between 2.06 and 2.45. Over the last two years included in the analy- sis, Monbat Plc also recorded high values of about 1.5;  Bulgarian public companies scored best in terms of Taffler’s model. Provided that the minimum value required for guaranteeing financial stability was above 0.3, the values for all companies were about 1, except for Sopharma Plc with its value of 0.5. Accord- ing to Taffler’s model, the only company endangered by a recent bankruptcy is Chimimport Plc with its con- stant value of 0.2 throughout the period from 2011 till 2014. The different models for assessing bankruptcy probability we presented in this paper give different results when empirically applied to one and the same Bulgarian company. What is more, in some cases, the results obtained are quite contradictory. The company which scored best in the assessment of corporate finan- cial sustainability according to all presented models is definitely M+S Hydraulic Plc. In terms of the models analysed here, all the other companies are relatively unstable, which poses a risk to their normal perfor- mance. On the one hand, the main reasons behind this trend might be due to the fact that each model has been developed and tested in a specific economy (those of the USA, Great Britain, etc.), which leads to substan- tial deviations when they are applied to Bulgarian business environment. On the other hand, the ratios presented in this paper are financial methods which have proved their reliability for assessing the condition of a company, yet the importance of each ratio (i.e. its relative weight) is determined on the basis of financial reporting and the significance which the information provided by these ratios has in the country where each model was developed and applied. A major factor for obtaining such contradictory results might be that the branches in which analysed companies operate was ignored and therefore the same ratios have different values depending on the specific nature of the business of each company. It is therefore appropriate to employ these models as a further analytical tool for assessing corporate financial viability, provided that the neces- sary adjustment to the specific environmental and eco- nomic conditions is made in advance. References 1. Adamov, V. Finansi na firmata. Biblioteka Obrazovanie i nauka, # 28, Svishtov. 2012. 2. Ada- mov, V. Upravlenie na kapitalite vav firmata. Akad- emichno Izdatelstvo Tsenov, Svsishtov. 2012. 3. Ale- xandrova, M. i dr. Finansi na predpriyatieto. Nov Balgarski Universitet. Sofia. 2013. 4. Gabrovski, R. Industrialen risk i menidzhmant. Akademichno Iz- datelstvo Tsenov, Svsishtov. 2009. 5. Ivanova, R. Analiz na finansovoto sastoyanie na predpriyatieto – problemi i antikrizisni resheniya. Tendentsii i predizvikatelstva v razvitieto na ikonomikata. Sbornik dokladi ot mezhdunarodna nauchna konferentsia Tom 1. Izdatelstvo Nauka i ikonomika, Ikonomicheski uni- versitet – Varna. 2012. 6. Kasarova, V. Modeli i pokazateli za analiz na finansovata ustoychivost na kompaniyata. Nov balgarski iniversitet. 2010. 7. Kasa- rova, V. Modeli za finansova diagnostika v stoynostno orientirano upravlenie upravlenie. Burgaski svoboden universitet. 2011. 8. Kasarova, V. Upravlenie na stoy- nostta nova upravlenska kontseptsiya. Sb. Finansovi inovatsii izsledvaniya i praktiki. NBU, S., 2008. 9. Marinov, I. Sovremennye aspekty i rolq na’evropeyskoto zakonodatelstvo, reglamentiruyu- shtego usloviya i poryadok zakluycheniya dogovorov potrebitel’skih kreditov. Ekonomika Ukrainy v umovah globalizatsii i regionalizatsii: Zbirnik tez dopovidey: Mizhnarodnoy naukogo-praktichnoy Interent- konferentsii studentiv ta molodih vchenih – Ternopil’ 4-5 kvitiya 2014 roku., s. 201-204. TNEU, 2014. 10. Pavlova, M. Faktorno vyzdeistvie vyrhu bo- gatstvoto na domakinstvata v . Bulgaria. Факторное воздействие на богатство домашних хозяйств в Республике Болгарии//Економіка України в умовах глобалізації i регiоналiзацiї: Збірник тез доповідей : Міжнар. наук.-практ. Iнтернет-конф. студентів та молодих вчених – Тернопіль 4-5 квітня 2014 року. – ТНЕУ, 2014. – С. 214-217. 11. Stoyanova, M. Falitat G. Angelov 108 Економічний вісник Донбасу № 4(38), 2014 stariyat nov demon. Troyan: B, 2011. 12. Altman E., Revisiting credit scoring models in a Basel 2 environ- ment, Finance working paper series, 05/2002, Stern school of business, 20 Mar 2009. 13. Altman, E. Hal- deman, R. Narayanan. P. ZETA analysis A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, Volume 1, Issue 1, June 1977. 14. Altman, I. Corporate Financial Distress and Bankrupt- cy: A Complete Guide to Predicting & Avoiding Dis- tress and Profiting from Bankruptcy. Wiley, 1993. 15. Begley, J. Ming, J. Watts, S. Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models. Review of Accounting Studies 1996, Volume 1, Issue 4. 16. Chibisova, V. Metodi otsinki i prognozuvannya bankrutstva pidpriemstv. Naukovi pratsi Kirovogradsk’kogo natsional’nogo tehnichnogo universitetu. Ekonomichni nauki. Ki- ev’skiy natsional’niy aviatsioniy universitet. 2012. 17. Fulmer, J. Moon, J. Gavin, T. and Erwin, J. Н-score model and its use in foreseeing the risk of а small en- terprises bankruptcy. 18. Rahimipoor, А. A compara- tive study of bankruptcy prediction models of Fulmer and Toffler in firms accepted in Tehran Stock Ex- change. Journal of Novel Applied Sciences. 2013. 19. Springate, Gordon L.V., “Predicting the Possibility of Failure in a Canadian Firm. Unpublished M.B.A. Re- search Project, Simon Fraser University, January 1978. 20. Sushko, V., Pavluyk, T. Klasifikatsiya modeley otsinki imovirnosti bankrutstva pidpriemstv. Ekonomi- ko-matematichne modeluyvaniya protsesiv biznesu. 2014. 21. Taffler R., Finding those companies in dan- ger using Discriminant analysis and financial ratio data: a comparative based study city business school, City University Business School, London, Working paper №3. 22. William H. Beaver Empirical Research in Accounting: Selected Studies 1966 Journal of Ac- counting Research Vol. 4, (1966). Ангелов Г. Вибір для моделювання еконо- мічної доцільності компаній индекса SOFIX в посткризові роки Фінансова криза поза сумнівом мала величез- ну негативну дію на реальний сектор в національ- ному і глобальному масштабі, у вигляді числа при- пинень компаній, ділової реструктуризації, убуван- ня виробництва, і штабної надмірності. Тому жит- тєво важливо оцінити фінансовий стійкий розвиток Болгарських компаній. Головна мета такої оцінки - ідентифікувати доступні можливості для ухвалення адекватних, зважених рішень, щоб підтримувати компанії в процесі пристосування до заміни ринко- вих вимог. Мета цієї статті – передбачити головні фінан- сові труднощі, використовуючи моделі для оцінки вірогідності банкрутства компаній і запропонувати вибір рішень для подолання ці труднощі. Мета досягалася через емпіричне випробування існую- чих моделей в термінах відкритих акціонерних товариств індексу SOFIX впродовж чотирьох років, з 2011 до 2014. Результати від цього випробування потім використані як еталонний тест в процесі ух- валення рішення. Ключові слова: корпоративне банкрутство, ак- тиви, ліквідність, прибутковість, виручка. Ангелов Г. Выбор для моделирования эко- номической целесообразности компаний индек- са SOFIX в посткризисные годы Финансовый кризис несомненно имел огром- ное негативное воздействие на реальный сектор в национальном и глобальном масштабе, в виде чис- ла прекращений компаний, деловой реструктуриза- ции, убывания производства, и штабной избыточ- ности. Поэтому жизненно важно оценить финансо- вое устойчивое развитие Болгарских компаний. Главная цель такой оценки - идентифицировать доступные возможности для принятия адекватных, взвешенных решений, чтобы поддерживать компа- нии в процессе приспосабливания к замене рыноч- ных требований. Цель этой статьи – предсказать главные фи- нансовые трудности, используя модели для оценки вероятностей банкротства компаний и предложить выбор решений для преодоления эти трудности. Цель достигалась через эмпирическое испытание существующих моделей в терминах открытых ак- ционерных обществ индекса SOFIX в течение че- тырех лет, с 2011 до 2014. Результаты от этого ис- пытания затем использованы как эталонный тест в процессе принятия решения. Ключевые слова: корпоративное банкротство, активы, ликвидность, прибыльность, выручка. Аngelov G. A choice for the design of financial viability of companies of SOFIX-index in post-crisis years A financial crisis undoubtedly had the enormous negative operating on the real sector in a national and global scale. A grate number of stopping of companies, business restructuring, decrease of production, and staff surplus. Therefore it is vitally important to esti- mate financial steady development of the Bulgarian companies. Primary objective of such estimation - to identify accessible possibilities for the acceptance of the adequate, self-weighted decisions, to support com- panies in the process of adaptation to replacement of market requirements. Aim of the article – to foresee main financial pressures, using models for the estimation of authentic- ity of bankruptcy of companies and to offer the choice of decisions for overcoming these difficulties. An aim was arrived at through the empiric test of existent models in terms of open corporations of index of SO- FIX during four years, from 2011 to 2014. Results from this test then drawn on as a benchmark test in the process of decision-making. Keywords: corporate bankruptcy, assets, liquidity, profitability, profit yield. Received by the editors: 14.11.2014 and final form 23.12.2014