Nonlinear analysis of the plasma wave decay

Distortions of drift waves form connected with nonlinear processes agreed upon by influence of plasma shear flows on wave are considered. Plasma velocities are directed along line of wave propagation. It is shown that result of such an influence is strong transformation of wave. The overturn is ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Khvesyuk, V.I., Karbushev, D.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/88227
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nonlinear analysis of the plasma wave decay / V.I. Khvesyuk, D.N. Karbushev // Вопросы атомной науки и техники. — 2009. — № 1. — С. 72-73. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-88227
record_format dspace
spelling irk-123456789-882272015-11-11T03:01:43Z Nonlinear analysis of the plasma wave decay Khvesyuk, V.I. Karbushev, D.N. Фундаментальная физика плазмы Distortions of drift waves form connected with nonlinear processes agreed upon by influence of plasma shear flows on wave are considered. Plasma velocities are directed along line of wave propagation. It is shown that result of such an influence is strong transformation of wave. The overturn is achieved. It leads to wave decay. Розглянуто перекривлення форми дрейфових хвиль, пов’язане з нелінійними процесами, які визвано впливом неоднорідних швидкостей плазми, направленими вздовж лінії розповсюдження хвилі. Показано, що внаслідок такого впливу хвиля істотно перекривлюється аж до перекидання. Це призводить до розпаду хвилі. Рассматриваются искажения формы дрейфовых волн, связанные с нелинейными процессами, вызываемыми воз- действием неоднородных скоростей плазмы, направленных вдоль линии распространения волны. Показано, что в ре- зультате такого воздействия волна существенно искажается, вплоть до опрокидывания. Это ведёт к распаду волны. 2009 Article Nonlinear analysis of the plasma wave decay / V.I. Khvesyuk, D.N. Karbushev // Вопросы атомной науки и техники. — 2009. — № 1. — С. 72-73. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.35.Qz; 52.55.Lf; 52.25.Fi http://dspace.nbuv.gov.ua/handle/123456789/88227 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фундаментальная физика плазмы
Фундаментальная физика плазмы
spellingShingle Фундаментальная физика плазмы
Фундаментальная физика плазмы
Khvesyuk, V.I.
Karbushev, D.N.
Nonlinear analysis of the plasma wave decay
Вопросы атомной науки и техники
description Distortions of drift waves form connected with nonlinear processes agreed upon by influence of plasma shear flows on wave are considered. Plasma velocities are directed along line of wave propagation. It is shown that result of such an influence is strong transformation of wave. The overturn is achieved. It leads to wave decay.
format Article
author Khvesyuk, V.I.
Karbushev, D.N.
author_facet Khvesyuk, V.I.
Karbushev, D.N.
author_sort Khvesyuk, V.I.
title Nonlinear analysis of the plasma wave decay
title_short Nonlinear analysis of the plasma wave decay
title_full Nonlinear analysis of the plasma wave decay
title_fullStr Nonlinear analysis of the plasma wave decay
title_full_unstemmed Nonlinear analysis of the plasma wave decay
title_sort nonlinear analysis of the plasma wave decay
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2009
topic_facet Фундаментальная физика плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/88227
citation_txt Nonlinear analysis of the plasma wave decay / V.I. Khvesyuk, D.N. Karbushev // Вопросы атомной науки и техники. — 2009. — № 1. — С. 72-73. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT khvesyukvi nonlinearanalysisoftheplasmawavedecay
AT karbushevdn nonlinearanalysisoftheplasmawavedecay
first_indexed 2025-07-06T15:59:17Z
last_indexed 2025-07-06T15:59:17Z
_version_ 1836913849117179904
fulltext NONLINEAR ANALYSIS OF THE PLASMA WAVE DECAY V.I. Khvesyuk, D.N. Karbushev Bauman Moscow State Technical University, Moscow, Russia, E-mail: khves@power.bmstu.ru Distortions of drift waves form connected with nonlinear processes agreed upon by influence of plasma shear flows on wave are considered. Plasma velocities are directed along line of wave propagation. It is shown that result of such an influence is strong transformation of wave. The overturn is achieved. It leads to wave decay. PACS: 52.35.Qz; 52.55.Lf; 52.25.Fi 1. INTRODUCTION Voluminous literature devotes problem of suppression of plasma instabilities by shear flows [1-6] etc. In order to solve this problem different approaches are proposed. In this work firstly approach based on analysis of distortion of drift wave shape is considered. It is well-known variety of nonlinear wave processes and methods of them investigations. One of directions of analysis these phenomena is investigation of transforma- tion of wave form and possible following them decay [7, 8, 9] also [10] and the references quoted therein. Within the framework of such analysis finite waves amplitudes and transformations of forms of waves are taken into ac- count. In much in the same way sonic waves, sea waves and ion – sonic waves were investigated [7-10]. Taking into account of finite value of wave amplitude leads to distortion of originally harmonic wave and increasing steepness of wave shape. This statement is correctly both for waves in gases and waves in plasmas [9]. In this work similar task is considered in connection with drift waves in plasma under influence velocity shear plasma along wave velocity. It is necessary to keep in view important features of drift waves. Firstly motion of plasma particles in drift waves is transverse with respect to velocity propagation of wave. Secondly drift waves are unstable consequently it is necessary to take into account exponential increase of wave amplitude. The last feature did not consider till now. It is shown that distortion of originally harmonic form leads to overturn and decay of waves. Similar decay of drift waves was observed in ex- perimental work [11]. This task is solved using two differ variety of approxi- mations. 2. METHOD OF INDEPENDENT PAR- TICLES This method is very simple and convenient in order to solve such a task. But it provides correct solution for weak deviations from sinusoidal wave shape in original linear state. Therefore it is possible to obtain only qualita- tive solution in such an approach. It is considered propagation of drift wave mode inside slab parallel yOz plate. Axis Ox is directed along gradient of plasma density and plasma temperature. Magnetic field is di- rected along Oz axis. Transverse with respect to magnetic field component of drift wave is propagated along axis Oy. First of all some results of analysis of particles motion in drift wave is presented using a simple method based on solu- tion of 2D set equations. Coordinate system is connected Fig. 1. The trajectory of charged particle inside drift wave having constant amplitude a Fig. 2. The trajectory of charged particle inside drift wave having exponential increasing amplitude with moving wave. Then for wave of constant amplitude a trajectory of every charged particle is ellipse (Fig. 1) 1 )( 2 2 2 2 =+ aA y a x . Here A is constant in formula Axv y = . For wave with exponential increasing amplitude trajectory of particle is spiral (Fig. 2). In parametric form equations of spiral are )()exp()( tSintatx ωγ= , [ ]{ }γωωωγγ γω −− + = )()()exp()( 22 tSintCostAaty Lower hydrodynamic approach is considered. 72 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2009. № 1. Series: Plasma Physics (15), p. 72-73. 3. HYDRODYNAMIC METHOD Hydrodynamic approach is based on the following starting points. Velocity distribution along direction of wave propagation (Oy axis) is given. Plasma density is taken as compressible. In cross direction with respect to the wave propagation (Ox axis) the particles motion is taken into account as electrical drift. One is determined by electric field arising because of density gradients along Oy axis. The main advantage this model is possibility of to consider essentially nonlinear stages wave existence. Then the overturn is achieved. Corresponding numerical results are presented in Fig. 3, 4. On these Figs. compari- son harmonic and perturbed waves is presented. 1tt = 2tt = 3tt = Fig. 3. Dynamics of drift wave mode under influence of velocity shear, Axv y = . Moment 3t corresponds to condition equality infinity of derivative perturbed wave )2(3 At < )(3 At Fig. 4. Dynamics of drift wave mode under influence of velocity shear, Axv y 2= . In moment of achievement of overturn amplitude value of wave less than in the case when Axv y = 4. CONCLUSIONS It is shown that influence of shear flow on drift wave leads to wave overturn. It means following decay of wave. Added analysis shows that wave decay can take place before achievement overturn namely when gradient density in wave yn ∂∂ / and gradient density in plasma xn ∂∂ /0 will become equal. From estimations follows that this equality appears earlier than overturn. REFERENCES 1. H. Biglari, H.D. Diamond, P.W. Terry // Phys. Fluids. 1990, v. B2, p. 1. 2. S. Hamaguchi, W. Horton // Phys. Fluids, 1992, v. B4, p.319. 3. J.Q. Dong, W. Horton// Phys. Fluids.1993, v.B5, p.1581. 4. K.H. Burrel, E.J. Doyl, P. Gohil et al // Phys. Plasmas. 1994, v. 1, p. 1536. 5. K.H. Burrel // Phys. Plasmas. 1997, v. 1, 4, p. 1499. 6. W.X. Wang, T.S. Hahm, W.W. Lee et al // Phys. Plasmas. 2007, v. 14, p. 072306. 7. L.D.Landau, E.M.Lifshits. Hydrodynamics. Moscow: “Nauka”, 2006. 8. G.B.Whithem. Linear and nonlinear waves. New York, Toronto, London, Sydney: “John Wiley & Sons”, 1974. 9. R.Z.Sagdeev// Voprosy teorii plasmy. 1964, v. 4, p. 20. 10. G.M.Zaslavsky, R.Z.Sagdeev. Introduction to nonlinear physics. Moscow: “Nauka”, 1988. 11.A.E. Petrov, K.A. Sarksyan, N.N. Skvortsova, N.K. Kharchev // Fizika plasmy. 2001, v. 27, p. 58. Article received 22.09.08 НЕЛИНЕЙНЫЙ АНАЛИЗ РАСПАДА ПЛАЗМЕННОЙ ВОЛНЫ В.И. Хвесюк, Д.Н. Карбушев Рассматриваются искажения формы дрейфовых волн, связанные с нелинейными процессами, вызываемыми воз- действием неоднородных скоростей плазмы, направленных вдоль линии распространения волны. Показано, что в ре- зультате такого воздействия волна существенно искажается, вплоть до опрокидывания. Это ведёт к распаду волны. НЕЛІНІЙНИЙ АНАЛІЗ РОЗПАДУ ПЛАЗМОВОЇ ХВИЛІ В.І. Хвесюк, Д.М. Карбушев Розглянуто перекривлення форми дрейфових хвиль, пов’язане з нелінійними процесами, які визвано впливом неоднорідних швидкостей плазми, направленими вздовж лінії розповсюдження хвилі. Показано, що внаслідок такого впливу хвиля істотно перекривлюється аж до перекидання. Це призводить до розпаду хвилі. 73